

New Hope For Patients with Rare Myopathies Characterized by an Immune Component

John Mendlein, PhD, CEO of aTyr Pharma Sanjay Shukla, MD, MS, CMO of aTyr Pharma Sanuj Ravindran, MD, CBO of aTyr Pharma

GUEST: JOHN VISSING, MD, PROFESSOR OF NEUROLOGY AT UNIVERSITY OF COPENHAGEN, DENMARK PRINCIPAL INVESTIGATOR FOR ATYR PHARMA'S 004 TRIAL

DECEMBER 13, 2016

Forward-Looking Statements

The following slides and any accompanying oral presentation contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. The use of words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," "opportunity," or "continue," and other similar expressions are intended to identify forwardlooking statements. For example, all statements we make regarding the potential therapeutic benefits of Physiocrines and our product candidates, including Resolaris[™] and iMod. Fc, the ability to successfully advance our pipeline or product candidates, the timing within which we expect to initiate, receive and report data from, and complete our planned clinical trials, and our ability to receive regulatory approvals for, and commercialize, our product candidates, our ability to identify and discover additional product candidates, our projected cash expenditures, and the ability of our intellectual property portfolio to provide protection are forward-looking statements. All forward-looking statements are based on estimates and assumptions by our management that, although we believe to be reasonable, are inherently uncertain. All forward-looking statements are subject to risks and uncertainties that may cause actual results to differ materially from those that we expected. These risks, uncertainties and other factors are more fully described in our filings with the U.S. Securities and Exchange Commission, including our most recent Quarterly Report on Form 10-Q, Annual Report on Form 10-K and in our other filings. The forward-looking statements in this presentation speak only as of the date of this presentation and neither we nor any other person assume responsibility for the accuracy and completeness of any forwardlooking statement. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

We own various U.S. federal trademark applications and unregistered trademarks, including our company name and Resolaris[™]. All other trademarks or trade names referred to in this presentation are the property of their respective owners. Solely for convenience, the trademarks and trade names in this presentation are referred to without the symbols [®] and [™], but such references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.

Our Agenda: 8:30am – 9:30am (EST)

Resolaris: Derived from the Resokine Pathway

John Mendlein, PhD
 Chief Executive Officer at aTyr Pharma

Potential Therapeutic Approaches to Rare Myopathies with an Immune Component

John Vissing, MD
 Professor of Neurology at the University of Copenhagen, Denmark

Resolaris Clinical Data Review from 3 Trials

Sanjay Shukla, MD, MS
 Chief Medical Officer at aTyr Pharma

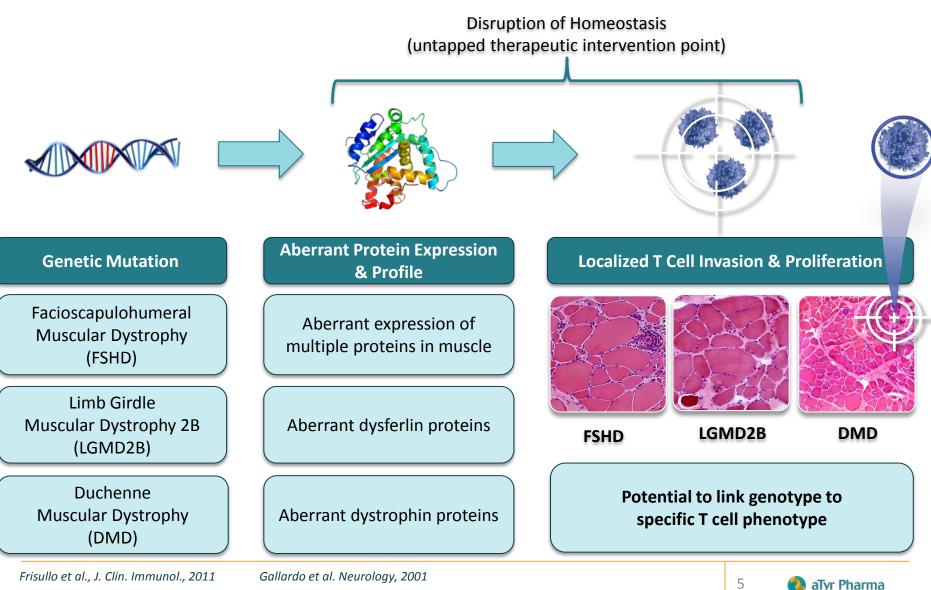
Resolaris Discussion and 2017 Outlook

• John Mendlein, PhD

Question and Answer Session

RESOLARIS: DERIVED FROM THE RESOKINE PATHWAY

JOHN MENDLEIN, PHD, CEO


DECEMBER 13, 2016

Rare Myopathies with an Immune Component

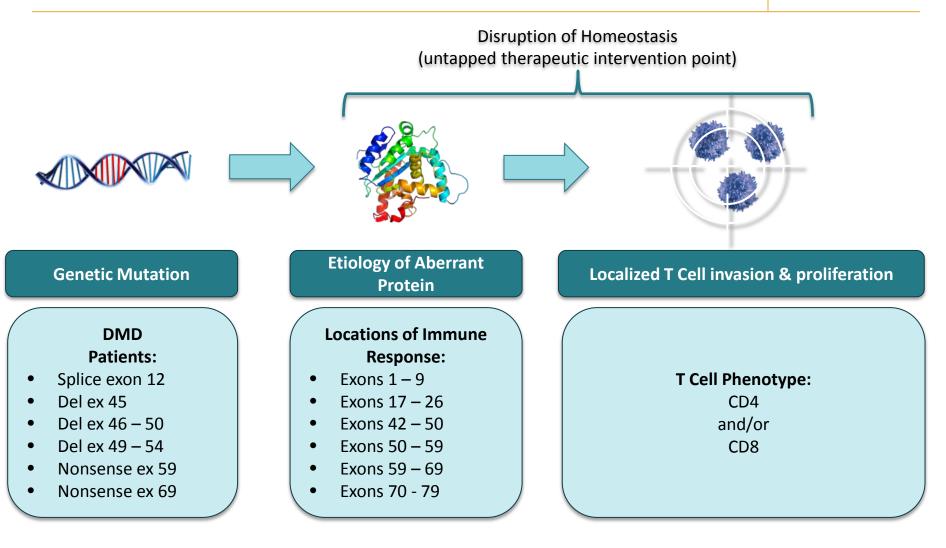
Chronic damage, homeostasis disrupted

RMICs

Flanigan et al. Human Gene Therapy, 2013

Anti-Dystrophin T Cell Responses in Duchenne Muscular Dystrophy: Prevalence and Glucocorticoid Treatment Effect

REFERENCE


Anti-Dystrophin T Cell Responses in Duchenne Muscular Dystrophy: Prevalence and a Glucocorticoid Treatment Effect

Kevin M. Flanigan,^{1*} Katie Campbell,² Laurence Viollet,¹ Wei Wang,³ Ana Maria Gomez,¹ Christopher M. Walker,² and Jerry R. Mendell^{1*}

Abstract

Duchenne muscular dystrophy (DMD) typically occurs as a result of truncating mutations in the DMD gene that result in a lack of expression of the dystrophin protein in muscle fibers. Various therapies under development are directed toward restoring dystrophin expression at the subsarcolemmal membrane, including gene transfer. In a trial of intramuscular adeno-associated virus (AAV)-mediated delivery of a therapeutic minidystrophin construct, we identified in two of six subjects the presence of a population of T cells that had been primed to recognize dystrophin epitopes before transgene delivery. As the presence of preexisting T cell immunity may have a significant effect on the success of therapeutic approaches for restoring dystrophin, we sought to determine the prevalence of such immunity within a DMD cohort from our Muscular Dystrophy Association clinic. Dystrophin-specific T cell immunity was evaluated in subjects with DMD who were either receiving the glucocorticoid steroid prednisone (n = 24) or deflazacort (n = 29), or who were not receiving steroids (n = 17), as well as from normal age-matched control subjects (n=21). We demonstrate that increasing age correlates with an increased risk for the presence of anti-dystrophin T cell immunity, and that treatment with either corticosteroid decreases risk compared with no treatment, suggesting that steroid therapy in part may derive some of its benefit through modulation of T cell responses. The frequency of dystrophin-specific T cells detected by enzymelinked immunospot assay was lower in subjects treated with deflazacort versus prednisone, despite similar overall corticosteroid exposure, suggesting that the effects of the two corticosteroids may not be identical in patients with DMD. T cells targeted epitopes upstream and downstream of the dystrophin gene mutation and involved the CD4⁺ helper and/or CD8⁺ cytotoxic subsets. Our data confirm the presence of preexisting circulating T cell immunity to dystrophin in a sizable proportion of patients with DMD, and emphasize the need to consider this in the design and interpretation of clinical gene therapy trials.

Connecting Genotype to Immune Cell Phenotype in Duchenne Muscular Dystrophy Patients

An extracellular homeostatic pathway that sets T cell responses as an agonist

Arising from histidine aminoacyl tRNA synthetase (HARS) gene

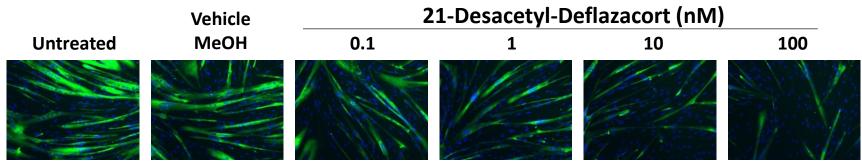
Changes activated T cell responses at levels <100pM

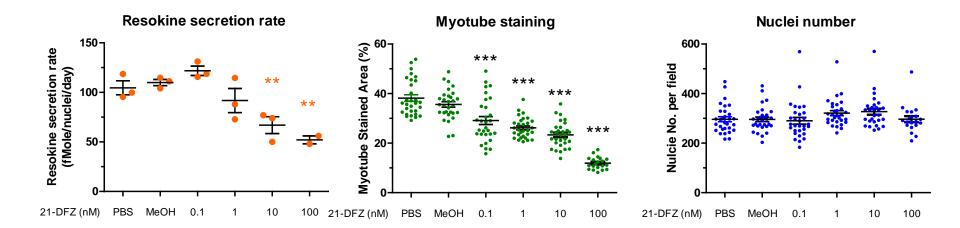
Pathway insufficiency leads to inappropriate immune responses

Resolaris, an agonist, is intended to promote homeostasis in muscle

IGF-1 Increases Resokine Release From Myoblasts Differentiating to Myotubes

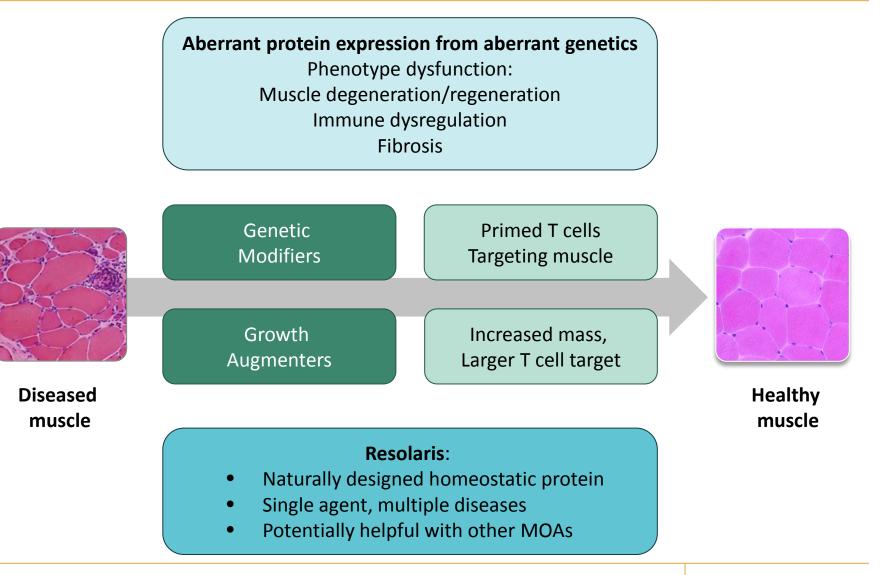
Linking the Resokine pathway to muscle biology


IGF-1 Control 100 ng/mL 200 ng/mL 400 ng/mL 150 Extracellular Resokine pM 100 50 O 100 200 0 400 IGF-1 Treatment mg/ml Antibodies sufficient to block 100pM Resokine block >50% of differentiation & growth (slower)



Deflazacort Inhibits Muscle Growth and Resokine Release Steroid use to treat RMIC patients

Deflazacort Negative Impact Human cells


Myotube (myosin)/Nuclei (Hoechst), Images at 100× magnification; Differentiation Day 0-5

Muscle Franchise Strategy: Looking Into The Future

Resolaris: Potential to Promote Muscle Homeostasis

Leveraging Nature's Design

11 🧃

John Vissing, MD

Professional:

- Professor of Neurology at the University of Copenhagen, Denmark
- Director of the Neuromuscular Clinic & Research Unit at National Hospital, Rigshospitalet

Disease Focus:

<u>Facioscapulohumeral muscular dystrophy</u>, Kennedy disease, Becker muscular dystrophy, different forms of <u>limb girdle muscular dystrophy</u>, myotonic dystrophy, mitochondrial myopathies and glycogenoses

Research:

Authored more than 250 scientific articles in international journals in the area of muscle disease

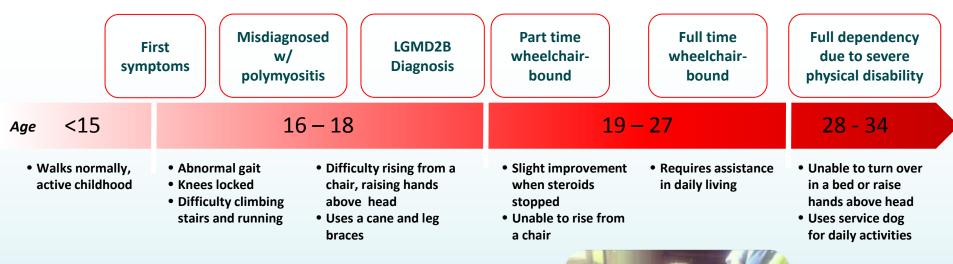
Education:

- MD degree from the Medical School at the University of Copenhagen
- Research fellowship training at University of Copenhagen and UT, Southwestern Medical Center, Dallas, US

POTENTIAL THERAPEUTIC APPROACHES TO RARE MYOPATHIES WITH AN IMMUNE COMPONENT

JOHN VISSING, MD, PROFESSOR OF NEUROLOGY AT UNIVERSITY OF COPENHAGEN, DENMARK PRINCIPAL INVESTIGATOR FOR ATYR PHARMA'S 004 TRIAL

DECEMBER 13, 2016

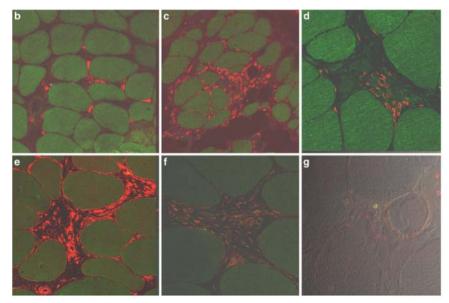

Facioscapulohumeral Muscular Dystrophy (FSHD) and Limb-Girdle Muscular Dystrophy 2B (LGMD2B)

	<u>FSHD</u>	LGMD2B	
Genetics	Toxic gain of function (DUX4 region)	Loss of function mutations (Dysferlin gene)	
Immune Pathology	Immune infiltration by activated T cells1 (primarily CD8+)Immune infiltrates consis CD4+, CD8+ and macroph		
Clinical	Debilitating, progressive skeletal muscle weakness		
Clinical	Pain, fatigue, difficulty moving limbs, may have respiratory distress		
Standard of Care	No therapeutic treatments, only supportive care provided		
	Heterogeneous by muscle	Homogeneous by muscle group	
Disease Progression			

¹Frisullo et al. J Clin Immunol (2011) 31:155–166 ²Gallardo et al. Neurology 2001;57:2136–2138; Yin et al. Int J Clin Exp Pathol 2015;8(3):3069-3075

🛛 🙆 aTyr Pharma

LGMD2B Disease Progression Case History



T Cell Involvement in the Pathophysiology of RMICs (For example: FSHD, LGMD2B, DMD)

FSHD

Endomysial infiltrates, in which CD8+ cells predominated (Fig. 2b–d), and perivascular infiltrates, mainly constituted by CD4+ cells (Fig. 2f) in all samples

LGMD2B

Table 2 Endomysial mononuclear cell infiltrates in clusters

Cells	Polymyositis	Dysferlinopathies
Mean cells per cluster	141 ± 74	88.6 ± 48
$CD8^+$	46.5 ± 10.3	11.1 ± 6.6
$CD4^+$	27.3 ± 11.5	40.6 ± 22.8
Macrophages	27.7 ± 7.6	36.7 ± 23.7
CD20 ⁺	≤0.1	0

LGMD2B & DMD

 Table 2. Comparison of inflammatory cells in muscle biopsy

 samples of dysferlinopathy, DMD/BMD, and polymyositis patients

	CD4⁺ cells (mean ± SD)	CD8⁺ cells (mean ± SD)	B cells (mean ± SD)	Macrophages (mean ± SD)
Dysferlinopathy	5.7 ± 4.4ª	1.3 ± 1.1°	2.3 ± 2.2	7.8 ± 4.3⁴
Polymyositits	12.3 ± 6.4	3.3 ± 1.8	2.6 ± 1.9	10.8 ± 6.5
DMD/BMD	4.9 ± 5.7⁵	2.0 ± 1.6	2.5 ± 3.4	3.7 ± 3.1⁰

*Dysferlinopathy versus polymyositis; P = 0.009; *DMD/BMD versus polymyositis; P = 0.009; °dysferlinopathy versus polymyositis; P = 0.005; °dysferlinopathy versus DMD/BMD; P = 0.047; *DMD/BMD versus polymyositis; P = 0.006. No other statistically significant differences were found among the different subgroups.

Treatment of dysferlinopathy with deflazacort: a double-blind, placebo-controlled clinical trial

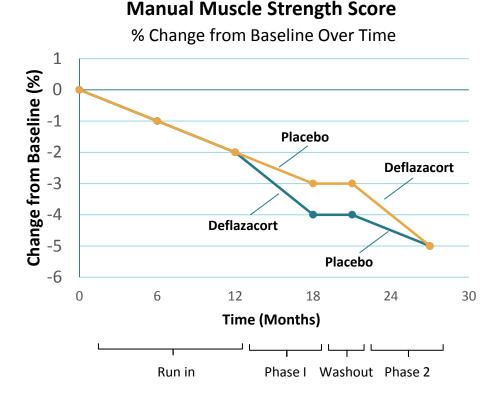
Maggie C Walter^{1*†}, Peter Reilich¹⁺, Simone Thiele¹, Joachim Schessl¹, Herbert Schreiber², Karlheinz Reiners³, Wolfram Kress⁴, Clemens Müller-Reible⁴, Matthias Vorgerd⁵, Peter Urban⁶, Bertold Schrank⁷, Marcus Deschauer⁸, Beate Schlotter-Weigel¹, Ralf Kohnen⁹ and Hanns Lochmüller¹⁰

Abstract

Background: Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (*DYSF*) gene encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B).

Methods: We assessed the one-year-natural course of dysferlinopathy, and the safety and efficacy of deflazacort treatment in a double-blind, placebo-controlled cross-over trial. After one year of natural course without intervention, 25 patients with genetically defined dysferlinopathy were randomized to receive deflazacort and placebo for six months each (1 mg/kg/day in month one, 1 mg/kg every 2nd day during months two to six) in one of two treatment sequences.

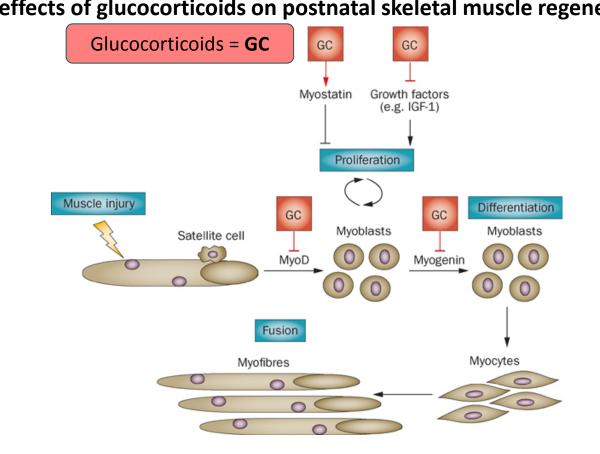
Results: During one year of natural course, muscle strength declined about 2% as measured by CIDD (Clinical Investigation of Duchenne Dystrophy) score, and 76 Newton as measured by hand-held dynamometry. Deflazacort did not improve muscle strength. In contrast, there is a trend of worsening muscle strength under deflazacort treatment, which recovers after discontinuation of the study drug. During deflazacort treatment, patients showed a broad spectrum of steroid side effects.


Conclusion: Deflazacort is not an effective therapy for dysferlinopathies, and off-label use is not warranted. This is an important finding, since steroid treatment should not be administered in patients with dysferlinopathy, who may be often misdiagnosed as polymyositis.

Trial registration: This clinical trial was registered at www.ClincalTrials.gov, identifier: NCT00527228, and was always freely accessible to the public.

Keywords: Limb girdle muscular dystrophy (LGMD), Dysferlinopathy, Therapy, Deflazacort, Muscle strength, Steroids

LGMD Patients Manual Muscle Strength* Decline at Double the Rate on Deflazacort vs Placebo



*Manual muscle strength assessed bilaterally by the modified Medical Research Council Scales (MRC) CIDD (Clinical Investigation of Duchenne Dystrophy) score, graded from 0 (worst) to 10 (best)

Limitations of Steroids as Potential Treatment in RMICs

The effects of glucocorticoids on postnatal skeletal muscle regeneration¹

Muscle cell homeostasis disrupted by steroids

¹Hanaoka, B. Y. et al. (2012) Implications of glucocorticoid therapy in idiopathic inflammatory myopathies Nat. Rev. Rheumatol. doi:10.1038/nrrheum.2012.85

aTyr Pharma 19

Different Approaches to Treating Rare Myopathies

- 1. Genetic based modifiers: gene therapy & editing; oligo approaches
 - Delivery of the agent
 - Immune response to new protein
 - Requires new molecules for many approaches

2. Muscle modifiers: various pathways to promote muscle growth

- Such as myostatin blockade agents & other pathways
- Potentially increases immune response from more diseased tissue
- Potentially accelerate regeneration/degeneration cycles

3. Treat immuno-pathophysiology of rare genetically distinct myopathies

- A. Steroids act as immuno-suppressants
 - Limited by side-effects
 - May have negative effects on muscle
 - Used in DMD, often with drug holidays
- B. Resolaris as natural homeostasis factor & immuno-modulator
 - Safety and tolerability looks promising
 - Potential activity in multiple myopathies with an immune component
 - Recent Phase 1b/2 is promising
 - Would like to see as next step:
 - Larger trial with placebo-control
 - Endpoints to augment MMT: QMT, Timed Function Tests, etc.

RESOLARIS CLINICAL PROGRAM – DATA UPDATE

SANJAY SHUKLA, MD, MS, CMO

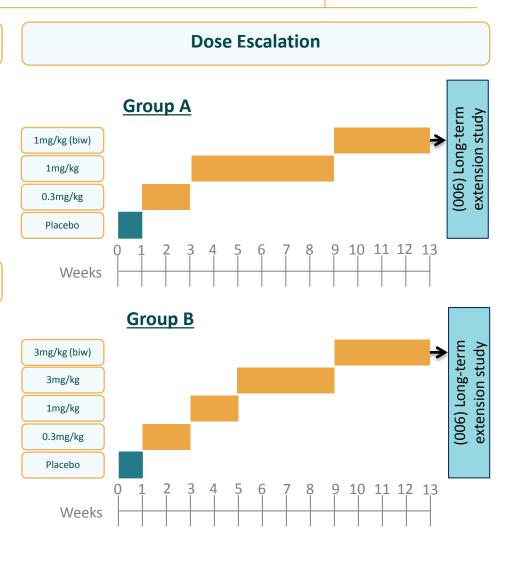
DECEMBER 13, 2016

Resolaris Clinical Program Summary

Trial	Indication(s)	Patients	Highest Dose	Design	Data Timing
002	Adult FSHD	3 dose cohorts (n=20 Total)	3mg/kg weekly	Placebo controlled, Double blinded; Interpatient Dose Escalation	Announced 1Q 2016
003	Early onset FSHD	Stage 1 (n=8)	3mg/kg weekly	Open-label, Intrapatient Dose Escalation	Interim-Results Announced Today
004	Adult LGMD2B, Adult FSHD	LGMD2B (n=10) FSHD (n=8)	3mg/kg biweekly	Open-label, Intrapatient Dose Escalation	Top-line Results Announced Today
005	Adult FSHD	Rollover from 002	3mg/kg weekly	Long-term Safety Extension	Updated Today
006	LGMD2B, FSHD, Early onset FSHD	Rollover from 003 & 004	3mg/kg weekly	Long-term Safety Extension	TBD

Adult LGMD2B and FSHD (004) Trial

Objective:

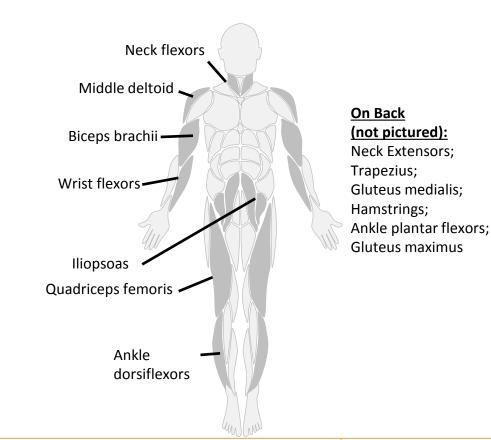

- Evaluate the safety/tolerability of total weekly exposure of 6.0mg/kg in LGMD2B and FSHD
- Assess drug activity more proximal to dosing

Rationale:

To evaluate different dosing regimens

Study Design

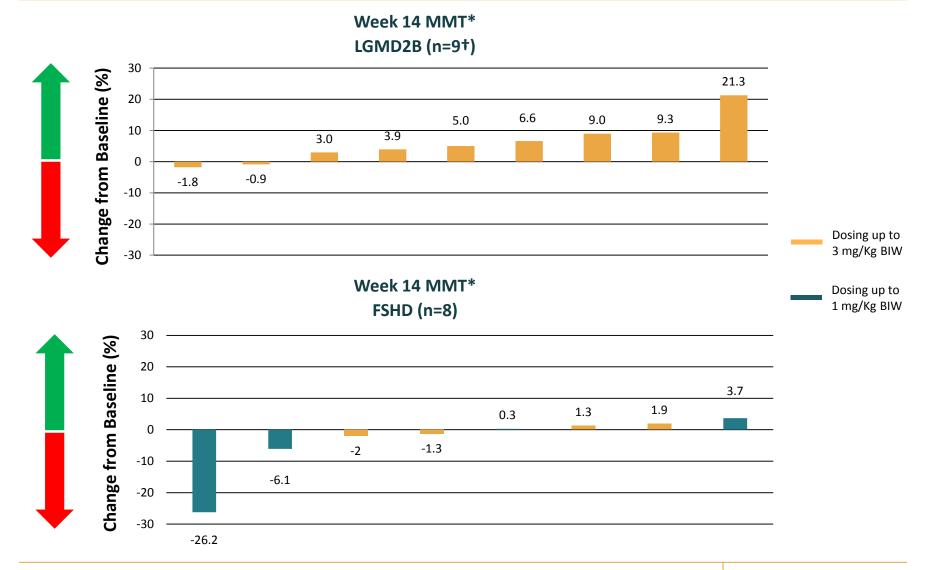
- Open-label, intra-patient dose escalation
- Multiple sites in US & Europe
- N = 18 patients; enrollment complete
- Group A: 4 FSHD patients
- Group B: 4 FSHD patients / 10 LGMD2B patients
- 18-75 years of age
- Targeted MRI positive or circulatory markers* (*in LGMD2B patients only)



Characteristic	Group A FSHD	Group B FSHD	Group B LBMD2B
Enrolled	4	4	10
Age (Mean years)	45.0	34.0	37.2
Median (Range)	45.0 (39, 51)	33.5 (33, 36)	33.5 (22, 62)
Male (number, %)	3, 75%	4, 100%	3, 30%
White (number, %)	4, 100%	4, 100%	9, 90%
BMI (kg/m²), mean (SD)	23.38 (1.1)	24.83 (2.0)	27.67 (4.4)

Global Manual Muscle Testing

Muscle function/strength was formally assessed by investigators using Manual Muscle Testing (MMT)


- 14 muscles evaluated at different time points in studies
- Muscles scored individually
- Composite score calculated
- Progression: lower scores
 - Negative change from baseline
- Improvement: higher scores
 - Positive change from baseline

MMT Scores FSHD and LGMD2B (004 Trial) Individual Patient Changes from Baseline (%)

*1-week follow-up is earlier than week 14 for 2 early discontinuations

[†]One patient did not complete the MMT assessments due to being wheel chair bound

Global Patient Reported Outcomes: INQoL

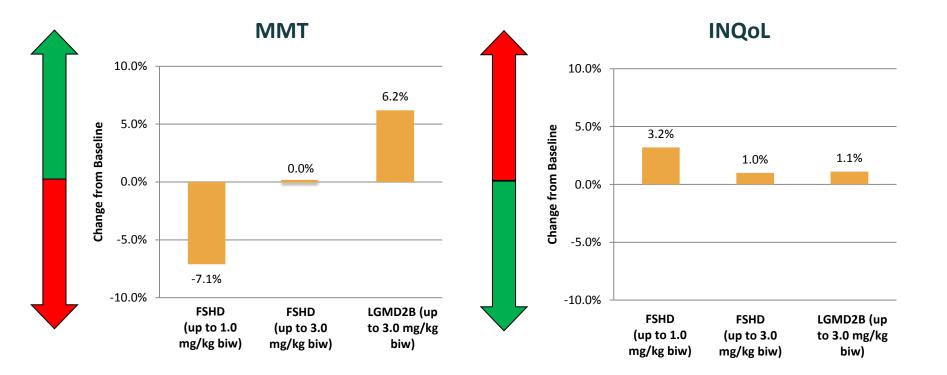
Individualized neuromuscular quality of life assessment

Validated Neuromuscular Assessment Tool*	 Global systematic assessment used in clinical studies and trials (to test for increased disease burden)
Self-Administered Questionnaire	 Questionnaire focuses on 4 dimensions: Symptoms, Life Domains, Treatment Effects, and Quality of Life Life Domains comprised of 5 subsections: Activities, Independence, Social, Emotions, and Body Image
Improvement = <u>Decreased Scores</u> (Decreased Disease Burden)	 Overall INQoL score calculated from translating individual life domain scores into a 100 point scale

FDA: "Generally, findings measured by a well-defined and reliable PRO instrument in appropriately designed investigations can be used to support a claim in medical product labeling if the claim is consistent with the instrument's documented measurement capability."**


* Vincent KA et al: Construction and Validation of a Quality of Life Questionnaire for Neuromuscular Disease (INQoL). Neurology 2007, 68:1051-1057.

** FDA Guidance for industry. Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims; 2009.


Overall INQoL Score (004 Trial) Individual Change from Baseline

FSHD/LGMD CLINICAL ACTIVITY

28 🕘 aTyr Pharma

Summary 004 Trial Clinical Activity Assessments

Biomarker Evaluation 004 Trial

- 004 Trial included various exploratory biomarkers
- Exploratory biomarkers did not generally establish sufficiently high or consistent levels or robust signals across a sufficient number of patients to determine test article effects
 - Including targeted muscle T2 and STIR MRI; and various plasma proteins
- Targeted muscle T2/STIR MRI will not be prioritized as a biomarker in the nearterm
- Peripheral cell based biomarkers will be assessed at a later date

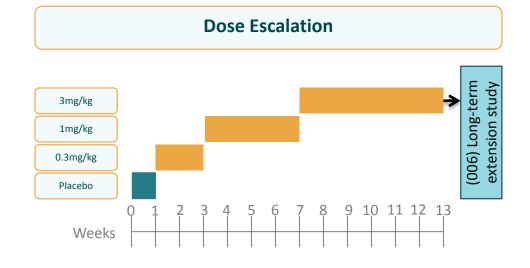
Early Onset FSHD (003) Trial

Objective & Rationale

Objective:

- Evaluate the safety/tolerability in a potentially different indication Early Onset FSHD
- Assess drug activity in new patient population and with additional endpoints

Rationale:

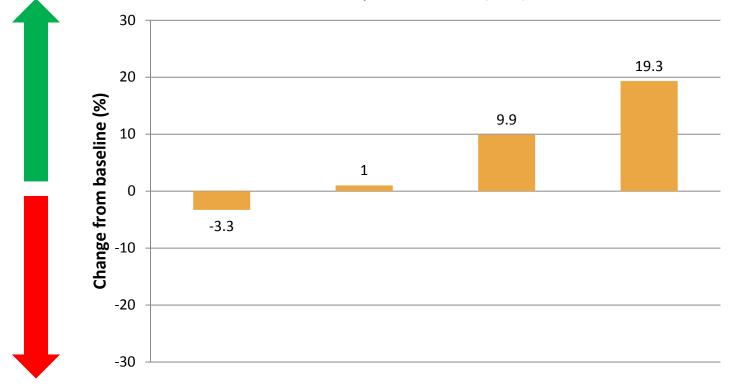

 Investigate an often more severe form of disease, involves additional organ systems

Status:

 Reported interim data analysis from the 4 patients today who completed treatment from Stage 1

Study Design

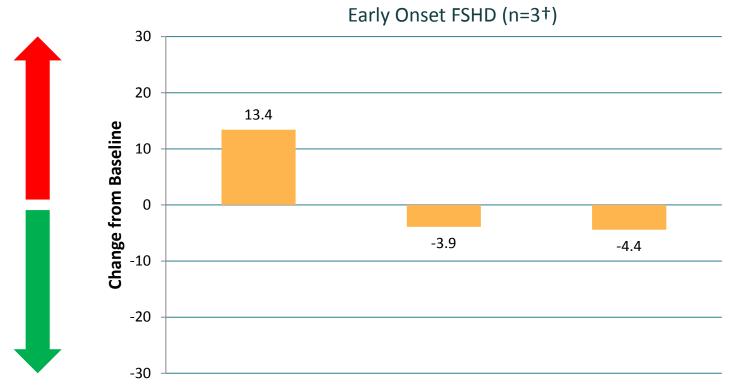
- Open-label, intra-patient dose escalation
- Multiple sites in US & Europe
- N = 16 patients
- Stage 1: 8 patients 16-25 years of age
- Stage 2: 8 patients 12-15 years of age
- Genetically confirmed diagnosis of FSHD and onset of symptoms prior to age 10



Overall MMT Score (003 Trial) Individual Change from Baseline (%), Per Protocol Pop.

Early Onset FSHD

Week 14 MMT


Early Onset FSHD (n=4)

Overall INQoL Score (003 Trial) Individual Change from Baseline, Per Protocol Pop.

Early Onset FSHD

Week 14 INQoL

Adult FSHD Long-Term Safety Extension (005) Trial

Study Design

- Patients receive weekly doses of 3.0 mg/kg
- Patients from Cohort 3 (3.0 mg/kg for 3 months) and Cohort 2 (1.0 mg/kg for 1 month) were eligible to roll-over to our long-term safety extension clinical trial
- Patients from Cohort 2 had greater than 12 months in between dosing (from end of 002 to initiation of 005)
- Patients from Cohort 3 were able to roll over directly into the 005 trial
- Open-label safety trial
- Initially 9 patients enrolled
- 3 sites in 3 countries

Study Objectives

Evaluate Safety and Tolerability:

• Build safety dossier for Resolaris

Evaluate Potential Activity Assessments:

- 1. Manual Muscle Test (MMT)
- Individualized Neuromuscular Quality of Life (INQoL)
- 3. Biomarker Assessments

Clinical Findings

- 3 of the 9 patients enrolled from the adult FSHD (002) Trial are still receiving treatment
- Of the 4 patients who received at least 6 months of therapy, there were no significant trends in worsening or improvement in either MMT or INQoL scores

Safety & Tolerability Overview: 003, 004 & 005

As of December 1, 2016, 44 patients have received Resolaris, across all trials (including 002, 003, 004, and 005), for a total drug exposure of 149 patient months

Resolaris demonstrated a favorable safety profile and was generally well-tolerated across all doses tested in:

✓ Adult FSHD, Early onset FSHD (age range 16 to 20), and Adult LGMD2B

✓ Long-term exposure in adult FSHD patients (4 patients on drug \geq 6 months)

No Serious Adverse Events (SAE) or deaths were reported

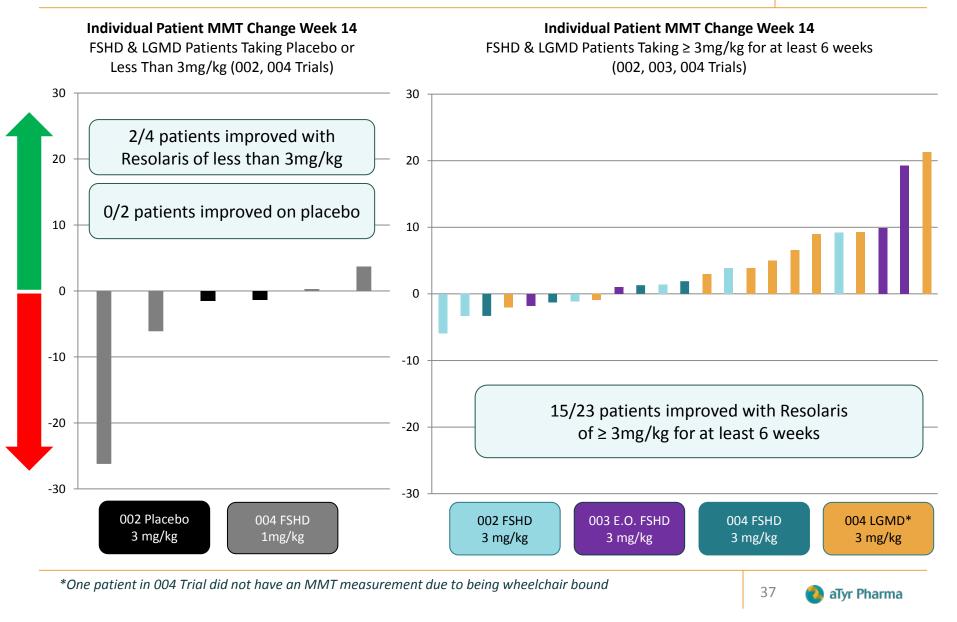
- ✓ All Adverse Events (AE) were in general mild or moderate in intensity
- No notable differences in AEs between adult FSHD, adult LGMD2B and early onset FSHD patients

✓ There were no dose limiting changes in lab parameters, vital signs or pulmonary tests

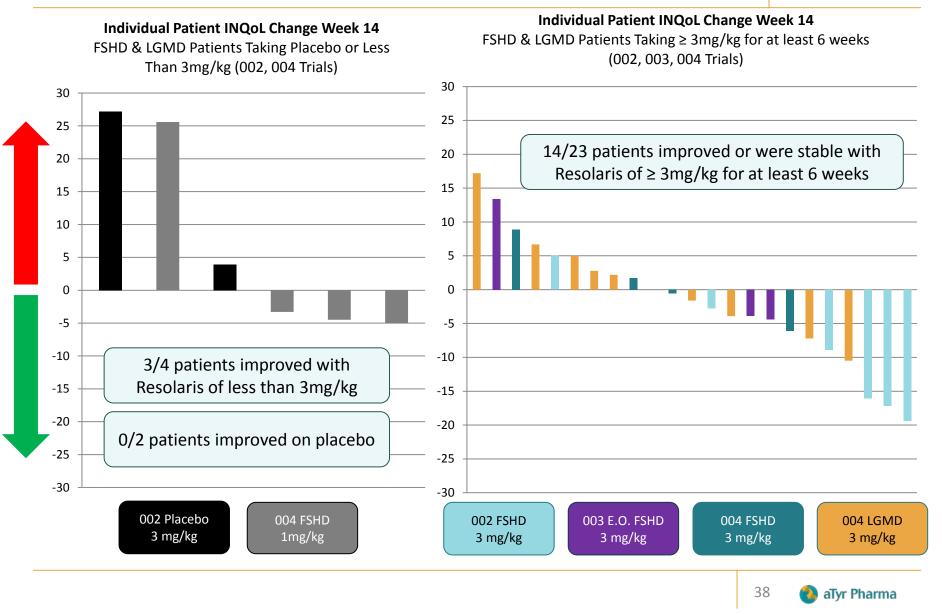
Protocol related discontinuations:

- Discontinued with a single IRR*(4 FSHD/1 LGMD): all IRRs mild to moderate, transient
- If Jo-1 Ab unit levels reach cut-off (5 FSHD): without associated clinical symptoms
- One LGMD patient discontinued from the 004 Trial for non-drug related reasons
- After changing the infusion protocol to a 90-minute infusion, 3 of 31 patients 9.1% experienced IRRs (previously the rate was 16.7% with an infusion rate of 30 minutes)
- Discontinuation rate in the 003/004/005 Trials under all protocols is 11 out of 35 patients (31%)
- Low level anti-drug antibody (ADA) assay signals 19/35 (54%; 13 FSHD and 6 LGMD) without associated clinical symptoms

Potential Safety & Tolerability Related Protocol Changes Going Forward:


- Potential for pre-medicating patients
- Potential to continue dosing depending on the nature of the IRR
- Raising threshold for Jo-1 Levels above 1.5 U/mL (current cut off)

Overall MMT: FSHD, LGMD2B & Placebo


Change from baseline at week 14

FSHD/LGMD ACTIVITY

Overall INQoL: FSHD, LGMD2B & Placebo

Change from baseline at week 14

RESOLARIS DISCUSSION AND NEXT STEPS

JOHN MENDLEIN, PHD, CHIEF EXECUTIVE OFFICER AT ATYR PHARMA

DECEMBER 13, 2016

2017 Rationale and Plan

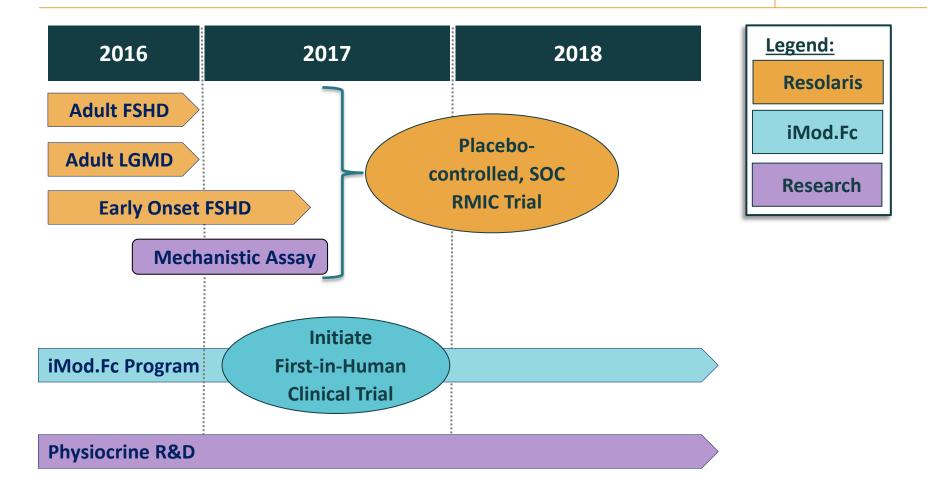
Emphasis on Single RMIC Indication in 2017, dependent on:

- Leverage safety and activity data reviewed today
- Natural history & disease progression; favor homogeneous phenotype
- Ability to examine MOA with mechanistic assay in patients
 - Peripheral cell and or biopsy samples
 - Ideally, ability to connect genotype to immune cell

Advancement of iMod.Fc into Humans:

• Program for rare lung diseases with an immune component (i.e. interstitial lung diseases)

Advancement of Preclinical Pipeline:


• Potential for novel applications of Physiocrines

Cost of Capital Considerations for Pipeline Advancement:

- \$80.9M in cash, cash equivalents, and investments as of 9/30/16; runway into 3Q 2018
- Partnering one or more of our programs to enhance the advancement of the pipeline

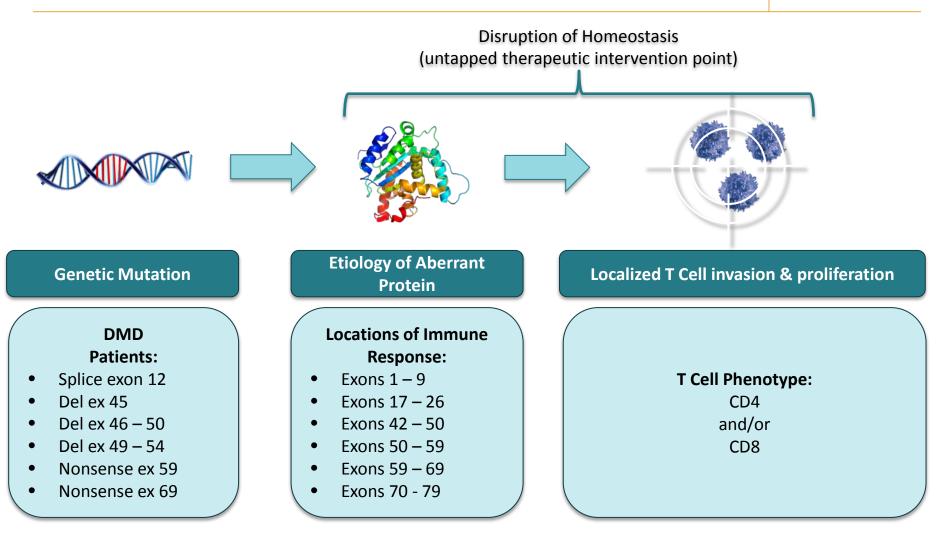
Next Steps: Potential Clinical Development Strategy*

QUESTIONS?

APPENDIX: REFERENCE PAPERS

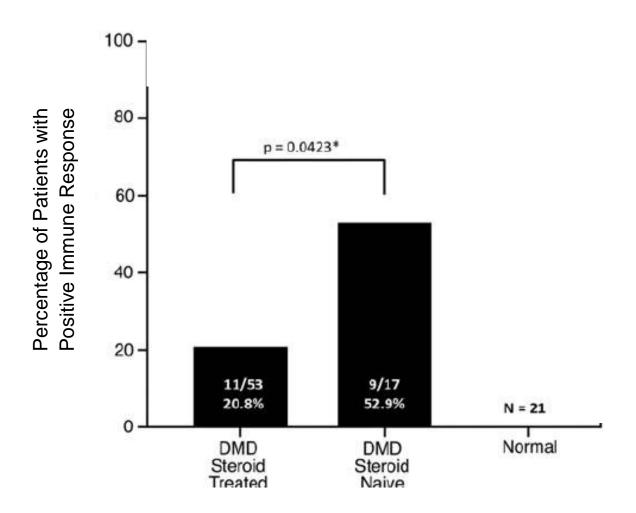
Anti-Dystrophin T Cell Responses in Duchenne Muscular Dystrophy: Prevalence and Glucocorticoid Treatment Effect

REFERENCE


Anti-Dystrophin T Cell Responses in Duchenne Muscular Dystrophy: Prevalence and a Glucocorticoid Treatment Effect

Kevin M. Flanigan,^{1*} Katie Campbell,² Laurence Viollet,¹ Wei Wang,³ Ana Maria Gomez,¹ Christopher M. Walker,² and Jerry R. Mendell^{1*}

Abstract


Duchenne muscular dystrophy (DMD) typically occurs as a result of truncating mutations in the DMD gene that result in a lack of expression of the dystrophin protein in muscle fibers. Various therapies under development are directed toward restoring dystrophin expression at the subsarcolemmal membrane, including gene transfer. In a trial of intramuscular adeno-associated virus (AAV)-mediated delivery of a therapeutic minidystrophin construct, we identified in two of six subjects the presence of a population of T cells that had been primed to recognize dystrophin epitopes before transgene delivery. As the presence of preexisting T cell immunity may have a significant effect on the success of therapeutic approaches for restoring dystrophin, we sought to determine the prevalence of such immunity within a DMD cohort from our Muscular Dystrophy Association clinic. Dystrophin-specific T cell immunity was evaluated in subjects with DMD who were either receiving the glucocorticoid steroid prednisone (n = 24) or deflazacort (n = 29), or who were not receiving steroids (n = 17), as well as from normal age-matched control subjects (n=21). We demonstrate that increasing age correlates with an increased risk for the presence of anti-dystrophin T cell immunity, and that treatment with either corticosteroid decreases risk compared with no treatment, suggesting that steroid therapy in part may derive some of its benefit through modulation of T cell responses. The frequency of dystrophin-specific T cells detected by enzymelinked immunospot assay was lower in subjects treated with deflazacort versus prednisone, despite similar overall corticosteroid exposure, suggesting that the effects of the two corticosteroids may not be identical in patients with DMD. T cells targeted epitopes upstream and downstream of the dystrophin gene mutation and involved the CD4⁺ helper and/or CD8⁺ cytotoxic subsets. Our data confirm the presence of preexisting circulating T cell immunity to dystrophin in a sizable proportion of patients with DMD, and emphasize the need to consider this in the design and interpretation of clinical gene therapy trials.

Connecting Genotype to Immune Cell Phenotype in Duchenne Muscular Dystrophy Patients

Steroids Suppress Dystrophin Specific Peripheral T Cell Response in Duchenne Muscular Dystrophy

Treatment of dysferlinopathy with deflazacort: a double-blind, placebo-controlled clinical trial

Maggie C Walter^{1*†}, Peter Reilich¹⁺, Simone Thiele¹, Joachim Schessl¹, Herbert Schreiber², Karlheinz Reiners³, Wolfram Kress⁴, Clemens Müller-Reible⁴, Matthias Vorgerd⁵, Peter Urban⁶, Bertold Schrank⁷, Marcus Deschauer⁸, Beate Schlotter-Weigel¹, Ralf Kohnen⁹ and Hanns Lochmüller¹⁰

Abstract

Background: Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (*DYSF*) gene encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B).

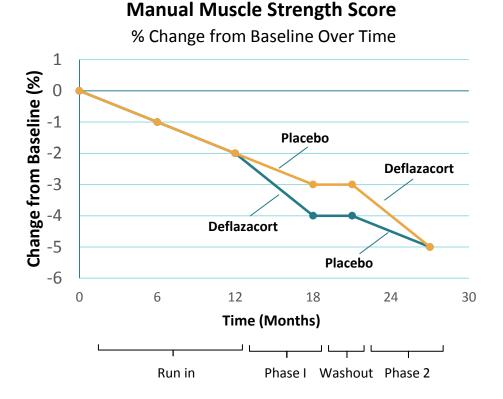
Methods: We assessed the one-year-natural course of dysferlinopathy, and the safety and efficacy of deflazacort treatment in a double-blind, placebo-controlled cross-over trial. After one year of natural course without intervention, 25 patients with genetically defined dysferlinopathy were randomized to receive deflazacort and placebo for six months each (1 mg/kg/day in month one, 1 mg/kg every 2nd day during months two to six) in one of two treatment sequences.

Results: During one year of natural course, muscle strength declined about 2% as measured by CIDD (Clinical Investigation of Duchenne Dystrophy) score, and 76 Newton as measured by hand-held dynamometry. Deflazacort did not improve muscle strength. In contrast, there is a trend of worsening muscle strength under deflazacort treatment, which recovers after discontinuation of the study drug. During deflazacort treatment, patients showed a broad spectrum of steroid side effects.

Conclusion: Deflazacort is not an effective therapy for dysferlinopathies, and off-label use is not warranted. This is an important finding, since steroid treatment should not be administered in patients with dysferlinopathy, who may be often misdiagnosed as polymyositis.

Trial registration: This clinical trial was registered at www.ClincalTrials.gov, identifier: NCT00527228, and was always freely accessible to the public.

Keywords: Limb girdle muscular dystrophy (LGMD), Dysferlinopathy, Therapy, Deflazacort, Muscle strength, Steroids



Clinical Investigation of Duchenne Dystrophy (CIDD)

- Primary outcome measures were manual muscle strength assessed bilaterally by the modified Medical Research Council Scales (MRC) CIDD (Clinical Investigation of Duchenne Dystrophy) score, graded from 0 (worst) to 10 (best)
 - http://www.researchrom.com/masterlist/view/4
- Testing was performed by two experienced neurologists after sufficient training with clinical trial procedures
- Inter-rater and intra-rater variability was assessed prior to the clinical trial, and reassessed 12-monthly during the trial period on the enrolled dysferlinopathy patients

LGMD Patients Manual Muscle Strength* Decline at Double the Rate on Deflazacort vs Placebo

Treatment with Deflazacort was for 6 months in each arm Single site, placebo controlled, cross over design (n=25)

*Manual muscle strength assessed bilaterally by the modified Medical Research Council Scales (MRC) CIDD (Clinical Investigation of Duchenne Dystrophy) score, graded from 0 (worst) to 10 (best)

