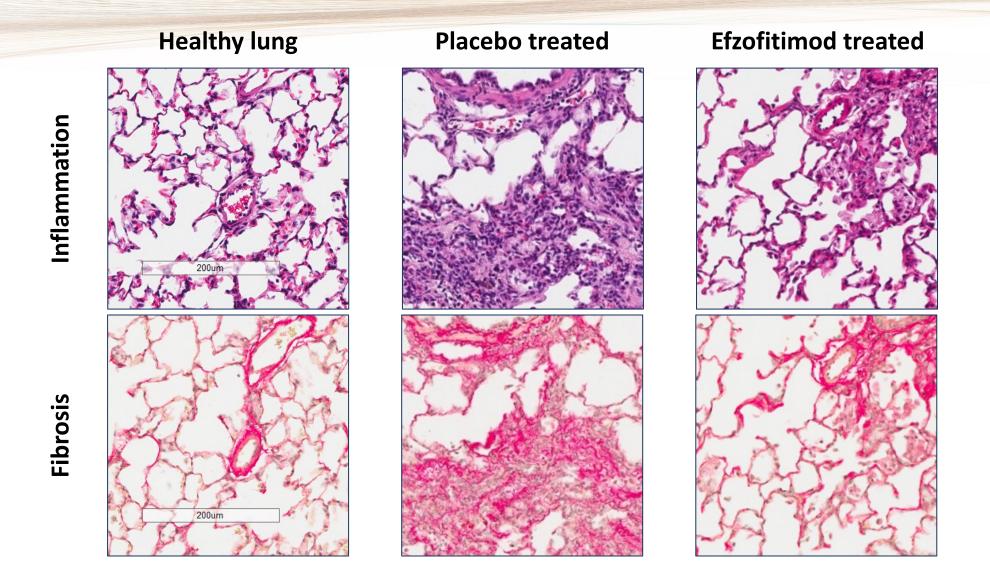
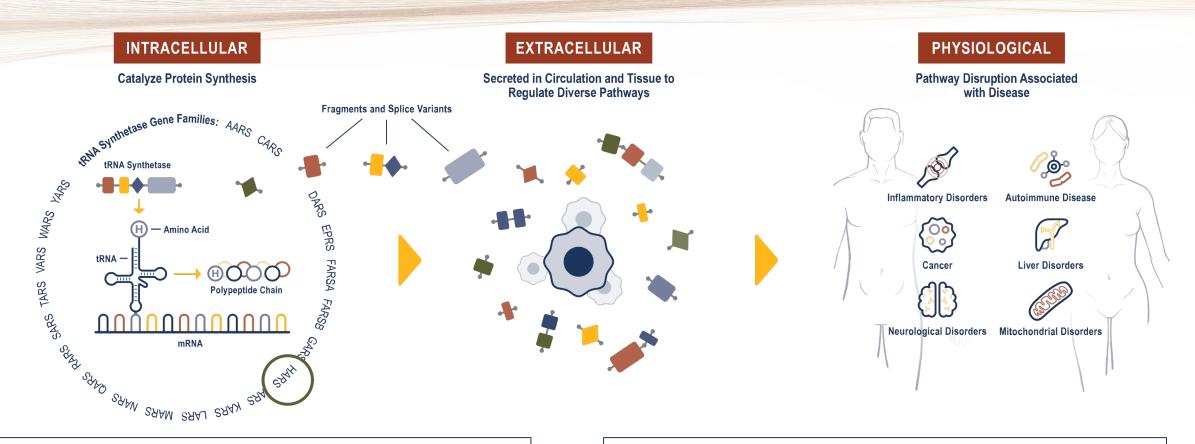


A New Path to Medicine

Company Reception


May 16, 2022

Forward Looking Statements


The following slides and any accompanying oral presentation contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. The use of words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," "opportunity," or "continue," and other similar expressions are intended to identify forward-looking statements. For example, all statements regarding: the potential therapeutic benefits of proteins derived from tRNA synthetase genes and our product candidates, including efzofitimod and ATYR2810, and development programs, including our NRP2 antibody program and our tRNA synthetase program; the ability to successfully advance our product candidates and undertake certain development activities (such as the initiation of clinical trials, clinical trial enrollment, the conduct of clinical trials and announcement of clinical results) and accomplish certain development goals, and the timing of such events; the potential market opportunity for our product candidates; our ability to receive regulatory approvals for, and commercialize, our product candidates; our ability to identify and discover additional product candidates; potential activities and payments under collaboration agreements; and the ability of our intellectual property portfolio to provide protection are forward-looking statements. All forward-looking statements are based on estimates and assumptions by our management that, although we believe to be reasonable, are inherently uncertain. All forward-looking statements are subject to risks and uncertainties that may cause actual results to differ materially from those that we expected. These risks, uncertainties and other factors are more fully described in our filings with the U.S. Securities and Exchange Commission, including our Annual Report on Form 10-K, our Quarterly Reports on Form 10-Q, and in our other filings. The forward-looking statements in this presentation speak only as of the date of this presentation and neither we nor any other person assume responsibility for the accuracy and completeness of any forward-looking statement. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

We own various U.S. federal trademark applications and unregistered trademarks, including our company name. All other trademarks or trade names referred to in this presentation are the property of their respective owners. Solely for convenience, the trademarks and trade names in this presentation are referred to without the symbols $^{\circ}$ and m , but such references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.

Efzofitimod: A Novel Mechanism to Treat Lung Inflammation and Fibrosis

Foundational Science: Novel Functions of Extracellular tRNA Synthetases

tRNA synthetases are secreted extracellularly and occur in novel forms which lose their canonical function

Extracellular tRNA synthetase disruption (genetic/ autoimmune) is associated with disease in humans

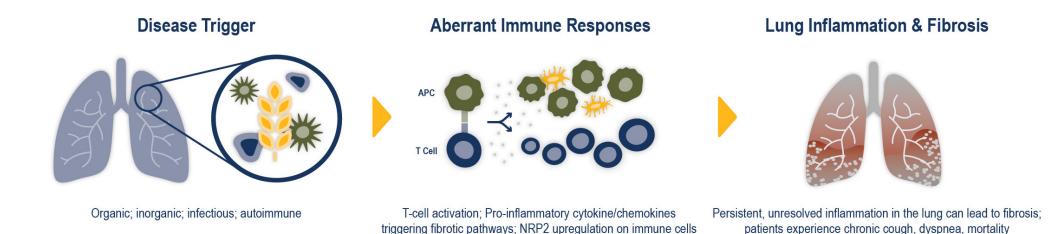
Validated synthetase platform is an engine for new protein therapeutics (e.g. efzofitimod) and new target ID (e.g. NRP2)

alyr

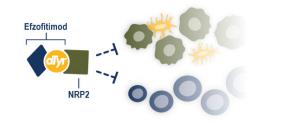
Efzofitimod (ATYR1923, KRP-R120)

A Novel Immunomodulator for Fibrotic Lung Disease

Efzofitimod: First-in-Class Therapy for Fibrotic Lung Disease


• Targets innate and adaptive immune cells during active inflammation to restore immune balance via selective modulation of NRP2

Pre-Clinical Evidence	٠	Anti-inflammatory and anti-fibrotic effects demonstrated in translational models of multiple ILDs
	٠	Reduces inflammatory cytokines and pro-fibrotic chemokines in vitro and in vivo
	•	No toxicity observed in GLP toxicology rodents and non-human primates out to 6 months


٠	Safe and well-tolerated in	n clinical	trials to	date with	exposure to 24 weeks
---	----------------------------	------------	-----------	-----------	----------------------

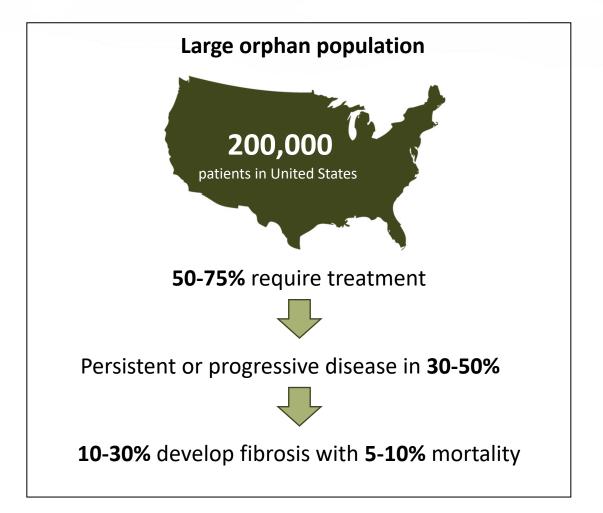
- Clinical Experience
- No immunogenicity observed
- Controls inflammation by downregulating cytokines implicated in sarcoidosis and other ILD
- Dose-dependent disease control demonstrated in pulmonary sarcoidosis patients

Efzofitimod Therapeutic Goal: Restore Immune Balance and Prevent Fibrosis

Efzofitimod Dampens Immune Responses

Efzofitimod binds to NRP2 and downregulates cytokine and chemokine production and T-cell activation

Stabilized Lung



Reduced inflammation and fibrotic deposition; symptom relief, stabilized lung function*

*aTyr hypothesis

First Efzofitimod Indication: Pulmonary Sarcoidosis

- Multisystem inflammatory disorder of unknown etiology, characterized by the formation of granulomas (clumps of immune cells)
- Lung affected in ~90% of all patients
- ~5x increased mortality in advanced disease
- SOC: corticosteroids; cytotoxic immunosuppressants; anti-TNFs – limited development pipeline
- High unmet need for treatments with improved safety and clinically established efficacy

alyr

Efzofitimod (ATYR1923, KRP-R120)

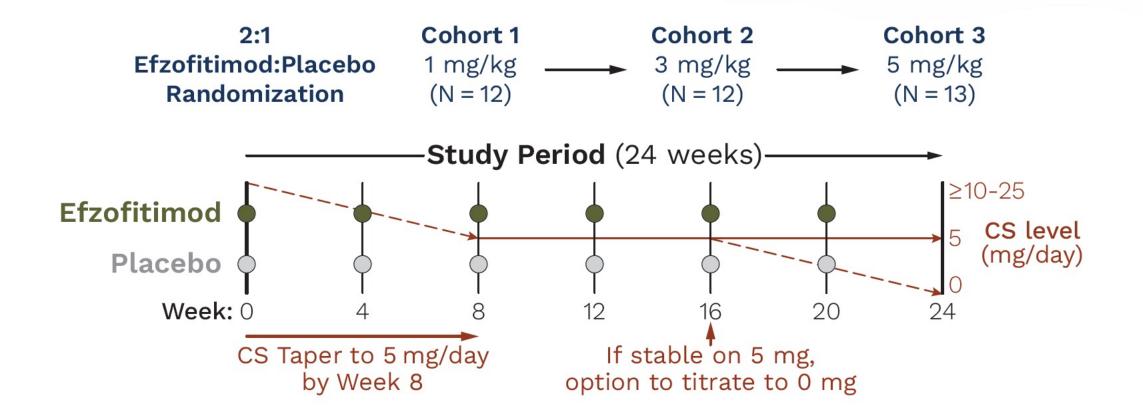
Results from Phase 1b/2a Study in Pulmonary Sarcoidosis

Peter H. S. Sporn, M.D. Professor of Medicine (Pulmonary and Critical Care); Cell and Developmental Biology; and Medical Education Northwestern University Feinberg School of Medicine

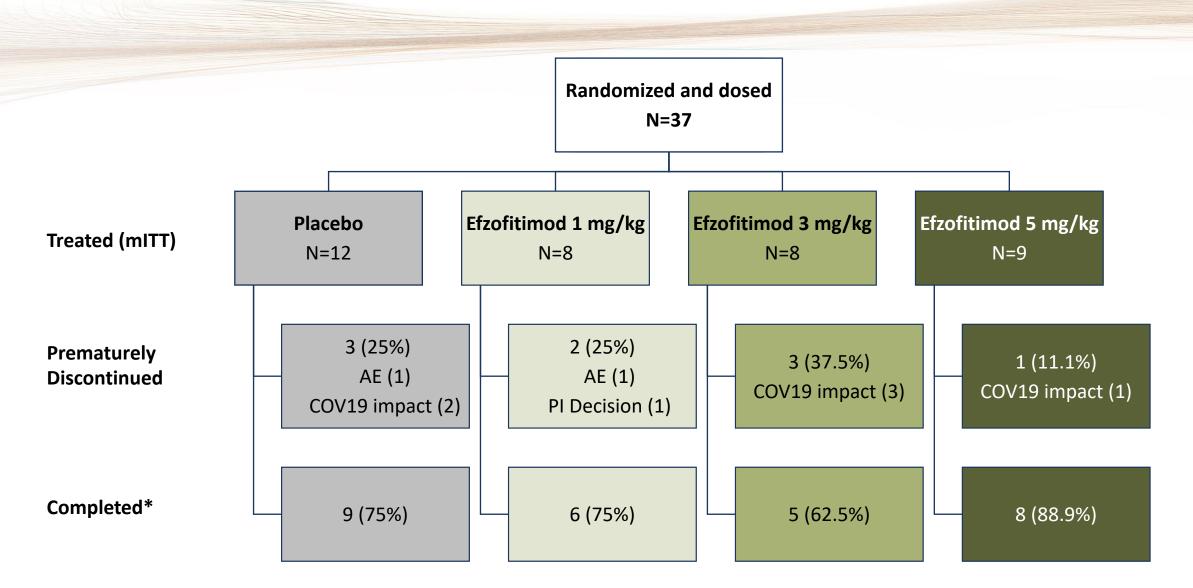
Phase 1b/2a Trial Design

Design	 Randomized (2:1), double-blind, placebo-controlled, multiple ascending dose 24 week study: 6 monthly IV doses of efzofitimod tested at 1, 3, and 5 mg/kg Forced steroid taper to 5 mg by week 8; amendment to allow taper to 0 mg at week 16 in responders
Population	 37 histologically confirmed pulmonary sarcoidosis patients ≥10 mg stable oral corticosteroid treatment Symptomatic/active disease at baseline
Primary Endpoint	 Safety and tolerability of multiple ascending IV efzofitimod doses
Secondary Endpoints	 Steroid-sparing effect Immunogenicity Pharmacokinetics (PK) Exploratory: Lung function (FVC and other PFTs); sarcoidosis symptom scores and quality of life scales; inflammatory and sarcoidosis biomarkers; FDG-PET/CT imaging

Phase 1b/2a Inclusion / Exclusion Criteria


Inclusion

- Histologically proven diagnosis of pulmonary sarcoidosis
- Stable treatment with 10 -25 mg/day oral corticosteroid
 - oral immunomodulator allowed
- Symptomatic/active disease at baseline
 - \circ FVC ≥ 50% percent predicted
 - MRC Dyspnea Scale score (>= 1)


Exclusion

- Disease consistent with Lofgren's syndrome
- Treatment with biological immunomodulator such as tumor necrosis factor-alpha inhibitors
- Clinically significant cardiac, neurological, gastrointestinal, and/or renal sarcoidosis
- PH requiring vasodilator treatment

Phase 1b/2a Study Schema

Phase 1b/2a Disposition

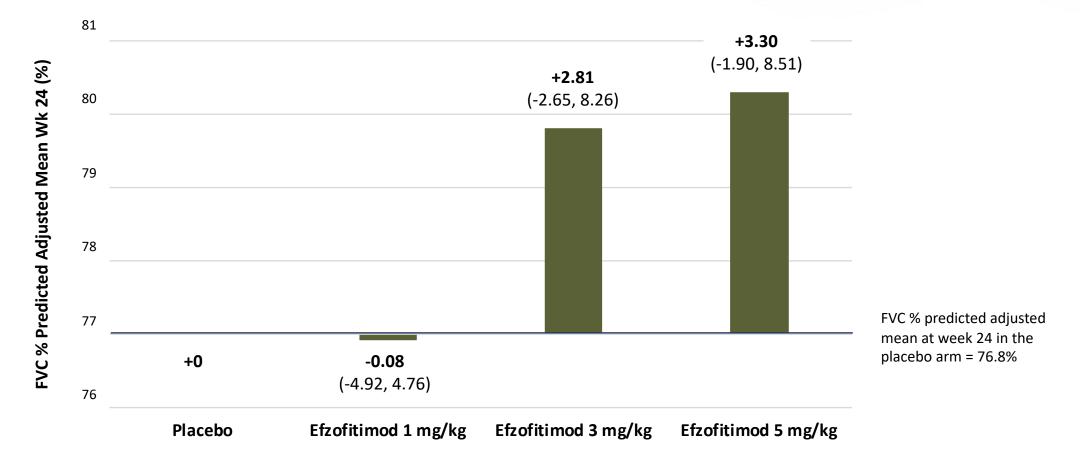
Baseline Demographics and Disease Characteristics Generally Balanced

Demographics	Placebo N=12	Efzofitimod 1 mg/kg N=8	Efzofitimod 3 mg/kg N=8	Efzofitimod 5 mg/kg N=9
Age (Years); mean (SD), >=65	52.5 (10.2), 0	54.5 (11.3), 1	51.8 (11.4), 2	50.8 (9.2), 0
Sex (Male); n (%)	5 (42)	4 (50)	4 (50)	4 (44)
Race; White / African American	9/3	5/3	6 / 2	3 / 6
Disease characteristics Mean (SD)				
FVC (% predicted)	77.3 (11.5)	68.3 (9.7)	83.8 (7.3)	83.8 (16.6)
Duration of disease (Years)	4.2 (3.3)	7.4 (6.1)	5.9 (5.1)	7.7 (9.9)
Baseline Dyspnea Index Score	4.8 (2.0)	4.3 (1.8)	7.6 (3.0)	6.3 (2.5)
Background Therapy				
Steroid dose (mg/day), mean	13.3	11.3	14.4	13.9
Immunomodulator; n (%)	6 (50)	3 (38)	1 (13)	4 (44)

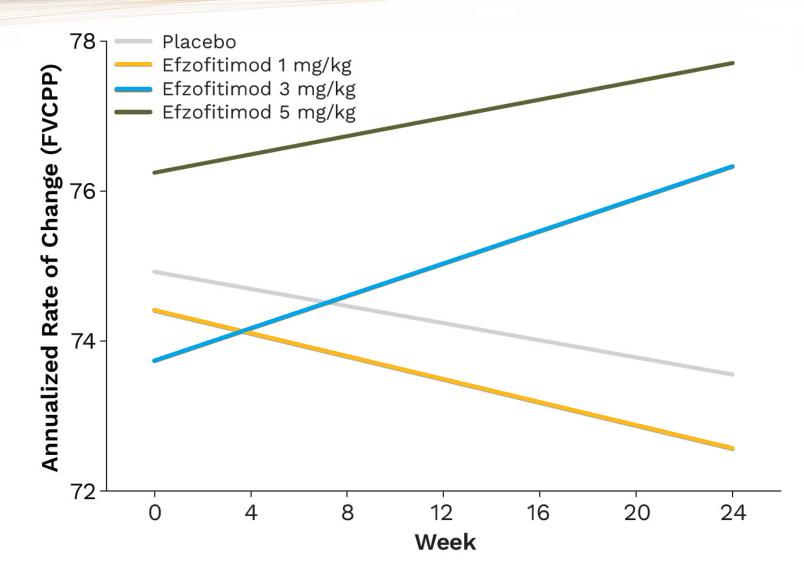
Monthly Dosing of Efzofitimod was Safe and Well-Tolerated

n (%)	Placebo N=12	Efzofitimod 1 mg/kg N=8	Efzofitimod 3 mg/kg N=8	Efzofitimod 5 mg/kg N=9
AEs	10 (83)	8 (100)	7 (88)	8 (89)
Drug-related AEs	4 (33)	3 (38)	1 (13)	3 (33)
Severe AEs (Grade 3 or 4)	4 (33)	2 (25)	0	2 (22)
SAEs	1 (8)	1 (13)	0	0

- No new or unexpected findings with repeat dosing
- No dose-response relationship observed
- Most frequent AEs were consistent with underlying disease: Cough, fatigue, wheezing
- No signal of immunogenicity
- No drug related SAEs
- No deaths


Dose-dependent Reduction in Steroid Utilization Compared with Placebo

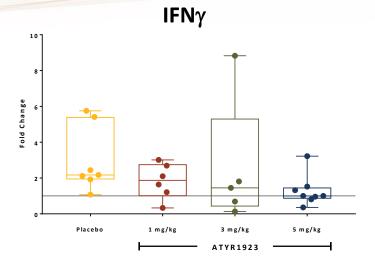
Post-taper Period	Placebo N=12	Efzofitimod 1 mg/kg N=8	Efzofitimod 3 mg/kg N=8	Efzofitimod 5 mg/kg N=9
Average daily dose (mg), adjusted mean	7.17	6.83	6.54	5.62
- relative reduction vs placebo (%)	-	-5%	-9%	-22%
Change from baseline (%), mean	-46	-41	-49	-58
- difference in adjusted means (%), mean (95% CI)	-	1.2 (-20, 22)	-2.3 (-23, 19)	-12.3 (-33, 8)
Tapered to 0 mg and maintained taper, n (%)	0	0	0	3 (33)

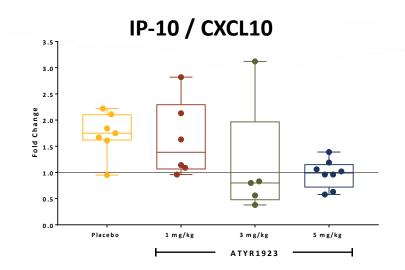

- 58% overall steroid reduction from baseline and 22% relative reduction compared to placebo in steroid utilization post taper in the 5 mg/kg treatment group
- 33% of patients able to taper off of steroids completely in 5 mg/kg treatment group while controlling disease symptoms

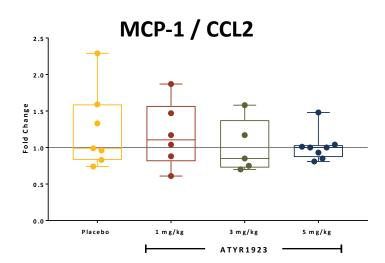
Dose-dependent Improvement in FVC % Predicted Compared to Placebo

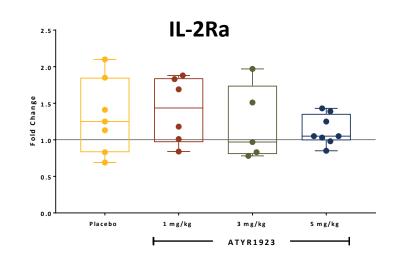
Higher Efzofitimod Doses Show Trends of Improvement in FVC % Predicted

Dose-dependent Improvements in PFTs Over Time Compared with Placebo


FVC, mean (SD)	Placebo N=12	Efzofitimod 1 mg/kg N=8	Efzofitimod 3 mg/kg N=8	Efzofitimod 5 mg/kg N=9
Absolute CFB at Week 24 (mL)	-40 (230)	-80 (160)	120 (130)	110 (250)
FVC % predicted, mean (SD)				
Absolute CFB at Week 24 (%)	-0.9 (6.1)	-2.3 (3.9)	2.6 (2.5)	2.6 (5.6)
Dlco % predicted, mean (SD)				
Absolute CFB at Week 24 (%)	-6.2 (14.4)	-6.1 (4.0)	-1.4 (5.0)	4.4 (14.6)


Dose-dependent Symptom Improvements Compared with Placebo


Differences in Adjusted Means vs Pbo at Week 24	Efzofitimod 1 mg/kg N=8	Efzofitimod 3 mg/kg N=8	Efzofitimod 5 mg/kg N=9
Dyspnea (TDI)	-0.76	3.33	4.49
Cough (LCQ)	-3.49*	2.98*	2.05
Fatigue (FAS)	0.76	-4.78	-7.77*
King's Sarcoidosis Score: Lung	-6.41	11.29	16.17*
King's Sarcoidosis Score: General Health	-5.1	2.13	18.33*


= clinically meaningful improvement based on published MCID

Dose-dependent Control of Key Disease and Inflammatory Biomarkers

Phase 1b/2a Data Supports Proof-of-Concept and Clinical Advancement

- Efzofitimod was safe and well-tolerated
- Strong suggestion of efficacy: Dose-response and consistent positive trends across key efficacy endpoints and multiple analysis populations
- Clinically meaningful symptom improvements in dyspnea, cough, fatigue and King's Sarcoidosis scores
- Dose dependent control of inflammatory biomarkers confirms anti-inflammatory effect

alyr

Efzofitimod (ATYR1923, KRP-R120)

Phase 3 EFZO-FIT[™] Study

Robert P. Baughman, M.D. Emeritus Professor of Medicine University of Cincinnati

Dose-dependent Reduction in Steroid Utilization Compared with Placebo

Post-taper Period	Placebo N=12	Efzofitimod 1 mg/kg N=8	Efzofitimod 3 mg/kg N=8	Efzofitimod 5 mg/kg N=9
Average daily dose (mg), adjusted mean	7.17	6.83	6.54	5.62
- relative reduction vs placebo (%)	-	-5%	-9%	-22%
Change from baseline (%), mean	-46	-41	-49	-58
- difference in adjusted means (%), mean (95% CI)	-	1.2 (-20, 22)	-2.3 (-23, 19)	-12.3 (-33, 8)
Tapered to 0 mg and maintained taper, n (%)	0	0	0	3 (33)

- 58% overall steroid reduction from baseline and 22% relative reduction compared to placebo in steroid utilization post taper in the 5 mg/kg treatment group
- 33% of patients able to taper off of steroids completely in 5 mg/kg treatment group while controlling disease symptoms

Dose-dependent Symptom Improvements Compared with Placebo

Differences in Adjusted Means vs Pbo at Week 24	Efzofitimod 1 mg/kg N=8	Efzofitimod 3 mg/kg N=8	Efzofitimod 5 mg/kg N=9
Dyspnea (TDI)	-0.76	3.33	4.49
Cough (LCQ)	-3.49*	2.98*	2.05
Fatigue (FAS)	0.76	-4.78	-7.77*
King's Sarcoidosis Score: Lung	-6.41	11.29	16.17*
King's Sarcoidosis Score: General Health	-5.1	2.13	18.33*

= clinically meaningful improvement based on published MCID

EFZO-FIT™ : Phase 3 Study of Efzofitimod in Pulmonary Sarcoidosis

Clinical POC
 Phase 1b/2a study was first in sarcoidosis to demonstrate effects on physiologic and quality of life measures concurrent with steroid reduction

FDA Alignment

- Positive FDA End-of-Phase 2 meeting supports advancement of clinical development
- Aligned on prioritization of endpoints that are most clinically meaningful to patients and providers

Global Pivotal Trial

- Multiple sites in North America, Europe and Japan
- Expected to initiate in Q3 2022

Trial Design

Objectives	 Primary: Assess the efficacy of efzofitimod in patients with pulmonary sarcoidosis Secondary: Assess the safety and tolerability of efzofitimod in patients with pulmonary sarcoidosis Exploratory: Explore the utility of serum biomarkers in evaluation of interventions to treat pulmonary sarcoidosis
Design	Phase 3, randomized, double-blind, placebo-controlled, multicenter study
Randomization	 Target enrollment of 264 patients 1:1:1 efzofitimod 3 mg/kg, efzofitimod 5 mg/kg, or placebo, with 88 patients assigned to each arm Randomization stratum: Presence or absence of concomitant immunosuppressant therapy, and OCS dose at baseline (< 10 mg/day versus ≥ 10 mg/day [prednisone or equivalent])
Duration	 Screening: up to 4 weeks Treatment Period: 48 weeks (12 monthly doses through Week 44); Primary Assessment at Week 48 Final Visit: Week 52 (8 weeks post-dose follow-up)

Major Efficacy Endpoints

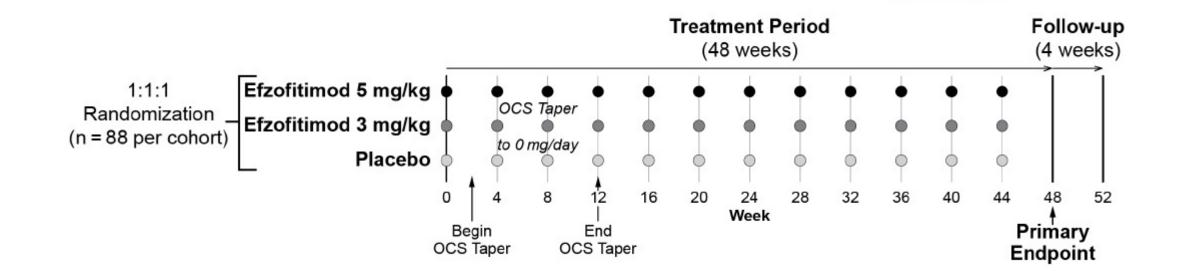
Primary Endpoint

• Change from baseline in mean daily OCS dose post-taper

Secondary Endpoints

- Annual rate of change in absolute value of FVC
- Percent change from baseline in mean daily OCS dose post-taper at Week 48
- Change from baseline in KSQ-Lung score at Week 48

Key Inclusion / Exclusion Criteria


Inclusion

- Adults ages 18-75, inclusive
- Diagnosis of pulmonary sarcoidosis for ≥6 months
- Requiring stable treatment with ≥7.5 but ≤25 mg/day oral corticosteroids
- Medical Research Council (MRC) Dyspnea
 Scale ≥ 1
- KSQ Lung Score \leq 70

Exclusion

- Extent of fibrosis > 20%
- Forced Vital Capacity < 50%
- Treatment > 1 oral immunomodulator
- Clinically significant pulmonary hypertension
- Patients with cardiac/neuro/renal sarcoidosis
- Treatment with biological immunomodulators

Phase 3 Study Schema

Multi-center Trial with Sites in North America, Europe and Japan

Anticipating 60-80 centers in 10 countries

 \bigstar

 \bigstar

Thank You