

Sarcoidosis and the Current Landscape Treatment Key Opinion Leader Webinar JULY 18, 2019

Forward-Looking Statements

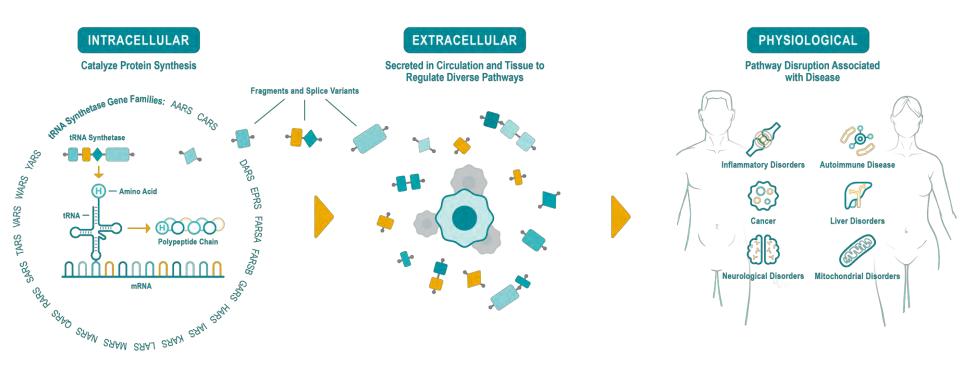
The following slides and any accompanying oral presentation contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. The use of words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," "opportunity," or "continue," and other similar expressions are intended to identify forward-looking statements. For example, all statements we make regarding our projected cash expenditures; the potential therapeutic benefits of proteins derived from tRNA synthetase genes and our product candidates, including ATYR1923 and any other product candidates; the ability to successfully advance our product candidates and undertake certain development activities (such as the initiation of clinical trials, clinical trials enrollment, the conduct of clinical trials and announcement of top-line results) and accomplish certain development goals, and the timing of such events; our ability to receive regulatory approvals for, and commercialize, our product candidates; our ability to identify and discover additional product candidates; and the ability of our intellectual property portfolio to provide protection are forward-looking statements. All forward-looking statements are based on estimates and assumptions by our management that, although we believe to be reasonable, are inherently uncertain. All forward-looking statements are subject to risks and uncertainties that may cause actual results to differ materially from those that we expected. These risks, uncertainties and other factors are more fully described in our filings with the U.S. Securities and Exchange Commission, including our Annual Report on Form 10-K, our Quarterly Reports on Form 10-Q, and in our other filings. The forward-looking statements in this presentation speak only as of the date of this presentation and neither we nor any other person assume responsibility for the accuracy and completeness of any forward-looking statement. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

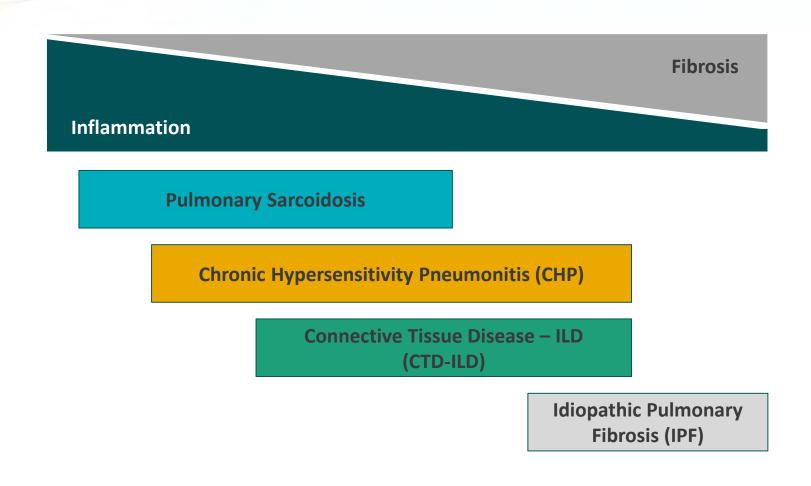
We own various U.S. federal trademark applications and unregistered trademarks, including our company name. All other trademarks or trade names referred to in this presentation are the property of their respective owners. Solely for convenience, the trademarks and trade names in this presentation are referred to without the symbols $^{\circ}$ and m , but such references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.

aTyr Pharma Company Overview

Corporate Overview

Founded:2005 by Paul Schimmel, Ph.D. and Xiang-Lei Yang, Ph.D, leading
tRNA synthetase researchers at The Scripps Research Institute
(TSRI)


- Science: Discovering and developing novel therapeutics based on our understanding of the extracellular functionalities of tRNA synthetase genes
- Patents:Global intellectual property estate directed to a potential
pipeline of protein compositions derived from 20 tRNA
synthetase genes covering ~300 protein compositions
- **Located:** San Diego, CA, with subsidiary operations in Hong Kong

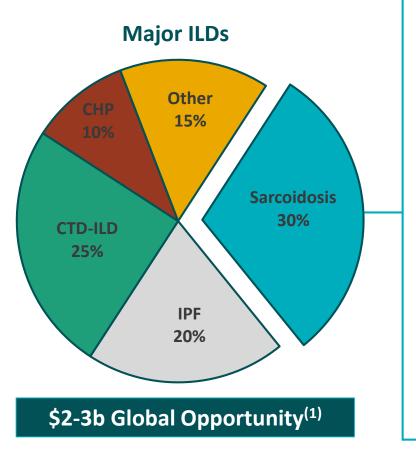

Development Pipeline

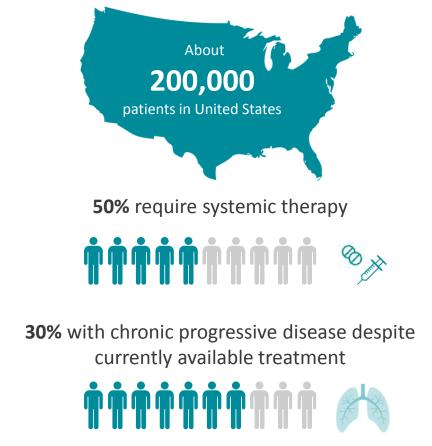
PROGRAM	DISEASES	DISCOVERY	PRECLINICAL	PHASE 1	PHASE 1B/2	PHASE 2/3
	Pulmonary Sarcoidosis					
ATYR1923	Chronic Hypersensitivity Pneumonitis (CHP)					
	Connective Tissue Disease ILD (CTD- ILD)					
tRNA Synthetase Candidates	Undisclosed		CSL Behring	-		
NRP-2 Candidates	Undisclosed					

Extracellular tRNA Synthetase Biology

ILDs Share Persistent Immune Engagement

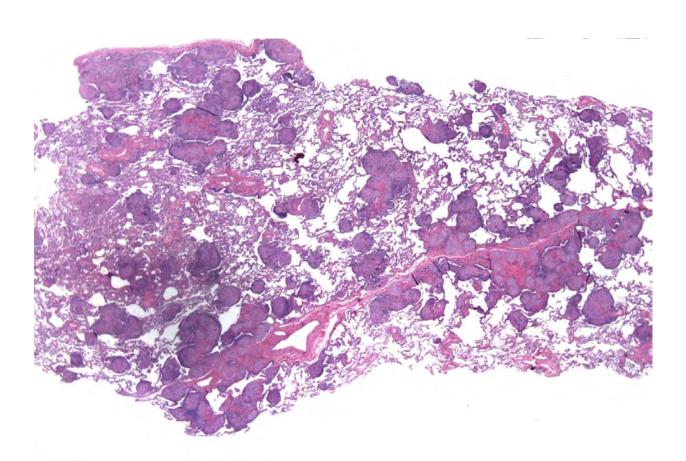
7




High Unmet Need Persists

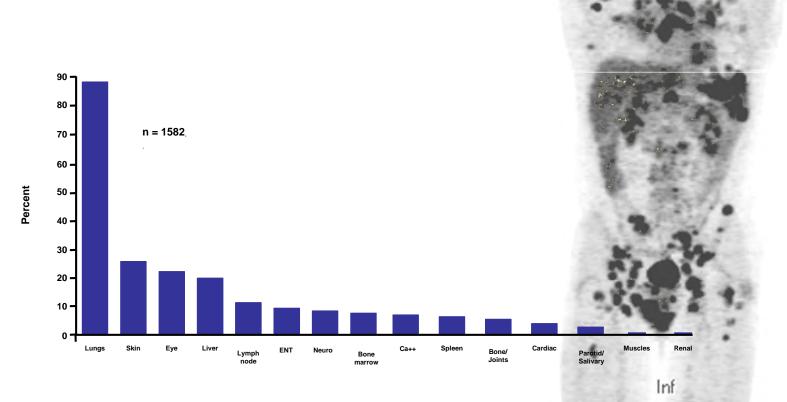
Pulmonary Sarcoidosis	Chronic Hypersensitivity Pneumonitis (CHP)
 Systemic inflammatory disorder characterized by non-caseating granulomas (CD4+ T cell driven) US prevalence: ~200k ~30% of patients have chronic progressive disease, unresponsive to steroid treatment Current SOC: steroids - cytotoxic agents - TNF inhibitors (as disease progresses) 	 Exaggerated immune response to environmental antigen US prevalence: ~60k 5-year mortality: ~20% No effective therapeutic options
Connective Tissue Disease-ILD (CTD-ILD)	Idiopathic Pulmonary Fibrosis (IPF)
 Common manifestation in CTD: Clinically relevant ILD in 10% of Rheumatoid Arthritis and >50% of Scleroderma patients US prevalence: ~150k 5-year mortality: ~20% Current SOC: Mycophenolate mofetil or cyclophosphamide for Ssc-ILD; no SOC for RA-ILD 	 Irreversible, progressive fibrotic disease of unknown cause US prevalence: ~135k 5-year mortality: 60-80% Current SOC: Nintedanib or pirfenidone (>\$2b combined 2017 sales)

Sarcoidosis: A Major Form of ILD

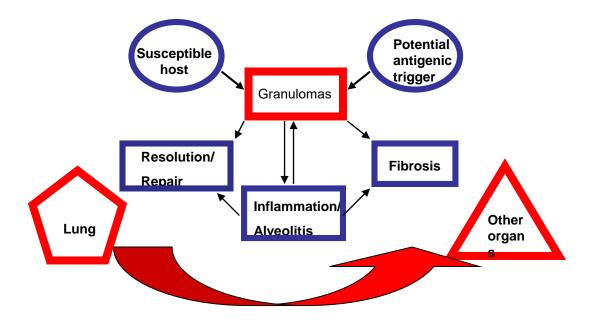

Sarcoidosis

Daniel A. Culver, DO Cleveland Clinic

Sarcoidosis: a granulomatous disorder of unknown etiology

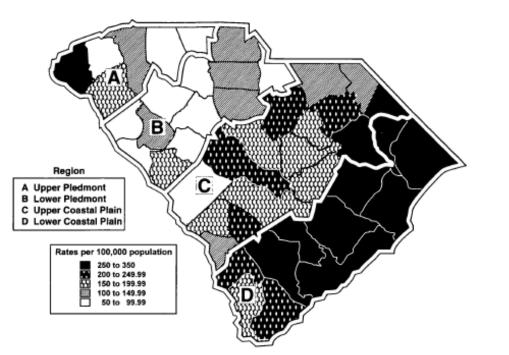


Sarcoidosis affects any organ

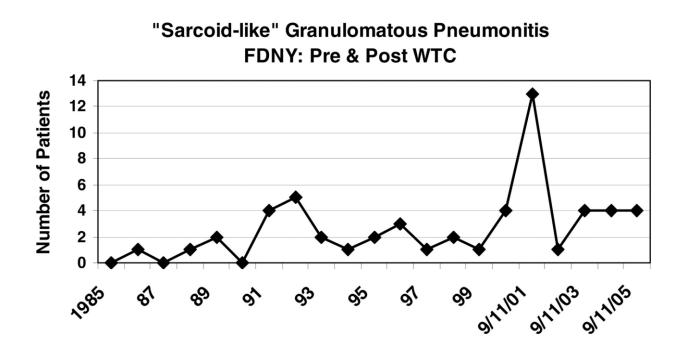

Grunewald J. Nat Rev Dis Primers

Organ involvement in a US sarcoidosis clinic

Judson MA. Sarcoidosis Vasc Diffuse Lung Dis 2012


Pathogenesis and Natural History of Sarcoidosis: Current Paradigm and Key Issues

Key clinical features of sarcoidosis syndrome

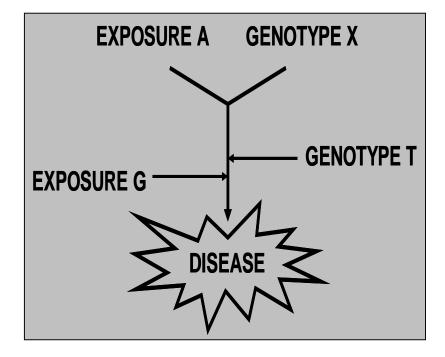

- Sine qua non is the granuloma
- Multisystem by definition
- Cases are concentrated in space and time
- Spontaneous remission is common
- Persistent disease does not always progress
- Racial and ethnic heterogeneity

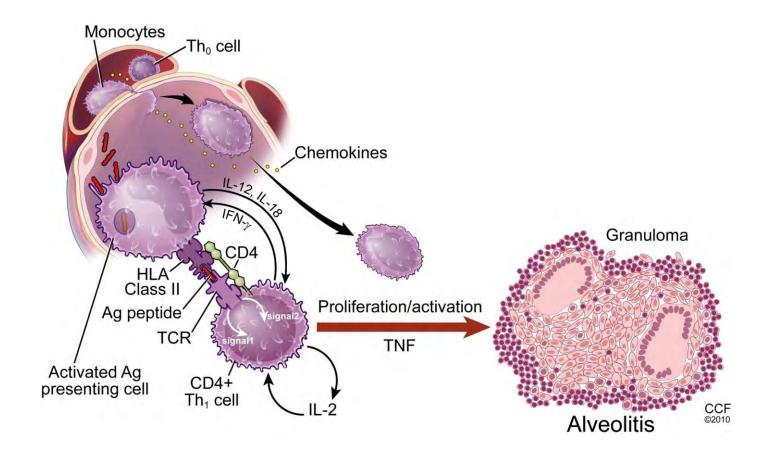
Geographic variance: hospitalization for sarcoidosis

Kajdasz DK. Am J Epidemiol 1999

Sarcoidosis-like disease in fire-fighters

Izbicki G. Chest 2007


Photocopier use and risk of sarcoidosis

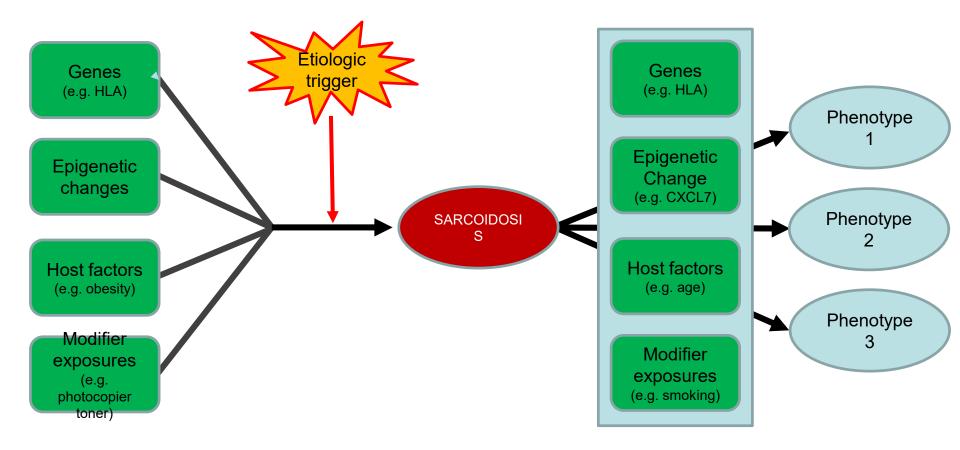

		ODDS RATIO ¹	
PHOTOCOPIER USE	TERTILE	(95% CONFIDENCE INTERVAL)	P VALUE
Duration of use (years)	0 1 - 7 > 7 Overall trend	1 1.37 (0.82, 2.31) 2.01 (1.18, 3.42)	Reference 0.234 0.010 0.012
Frequency of use (times per Week)	0 $1-3$ > 3 Overall trend	l 1.10 (0.63 – 1.91) 2.19 (1.31 – 3.65) –	Reference 0.746 0.003 0.003
Duration of use (min per episode)	0 1 - 2 > 2 Overall trend	1 1.26 (0.72 – 2.20) 1.83 (1.11, 3.02)	Reference 0.415 0.018 0.018
Total lifetime exposure (hours)	0 1 - 60 > 60 Overall trend	i 1.07 (0.61, 1.88) 1.98 (1.18, 3.35) –	Reference 0.824 0.010 0.012

¹adjusted for age, sex, method of data collection and history of clerical work

Rybicki BA. SVDLD 2004

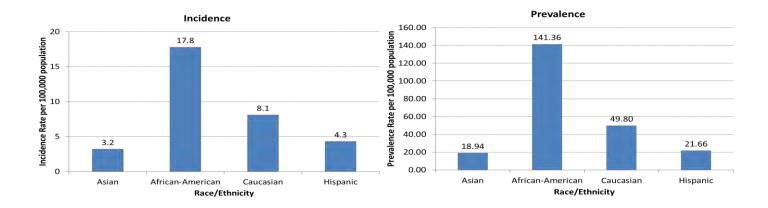
Etiologic and modifier exposures and genes

Baughman RP, Culver DA, Judson MA. AM J Respir Crit Care Med 2011

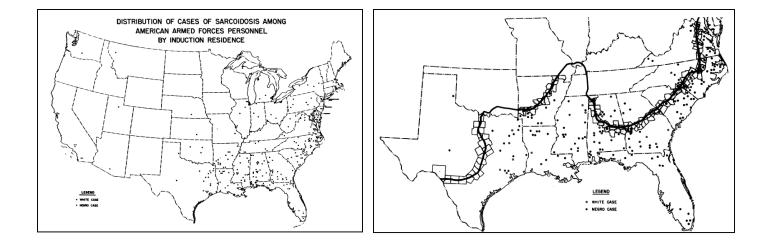

Some HLA associations

	Susceptibility	Phenotype
DRB1*03	+	Lofgrens' syndrome
DRB01*01	protective	
DRB15*01	protective	
DRB1*1101	+	
DRB1*0401	protective	↑uveitis
DQB1*0601		Cardiac (Japan)
DRB1*14	+	
DRB1*1201	+ (African-American)	
DRB1*0101	+ (African-American)	
DPB1*0101		Hypercalcemia
B*08	+	Resolving disease/arthritis
ossman MD. Am J Hum G	enet 2003 L	evin AM. Am J Respir Cell Mol Biol 2014

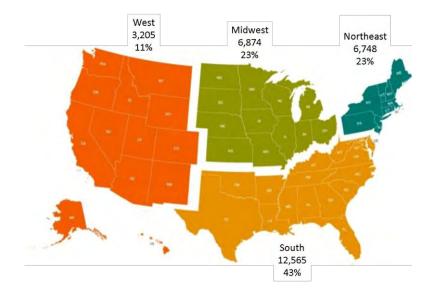
Rossman MD. Am J Hum Genet 200 Sato H. Hum Mol Genet 2010


Levin AM. Am J Respir Cell Mol Biol 2014 Grunewald J. Am J Respir Crti Care Med 2004

Etiology is only part of the story

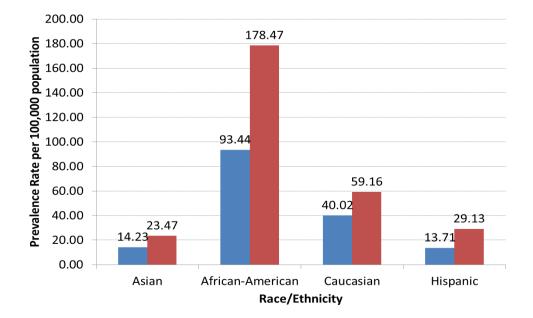

Sarcoidosis in the US

2010-2013 Optum Database

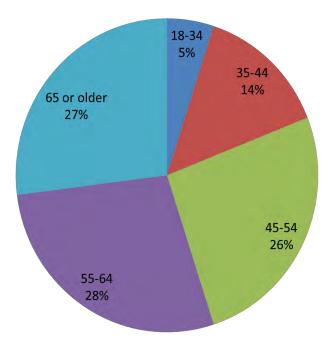

Baughman RP. Ann Am Thorac Soc 2016

Sarcoidosis in US military personnel during WWII

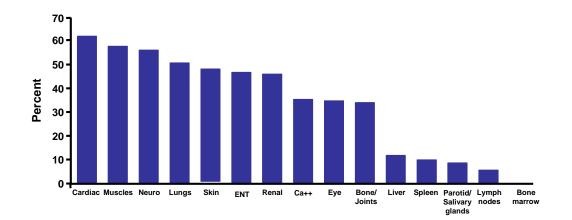
Gentry J Clin Invest 1955


Sarcoidosis less common in the West

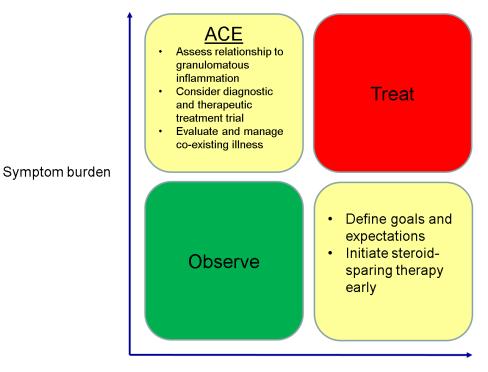
■ Northeast ■ Midwest ■ South ■ West 100 90 80 70 60 50 40 30 20 10 0 African American Asian Caucasian Hispanic (n=355) (n=975) (n=5,913) (n=11,363)


Baughman RP. Ann Am Thorac Soc 2016

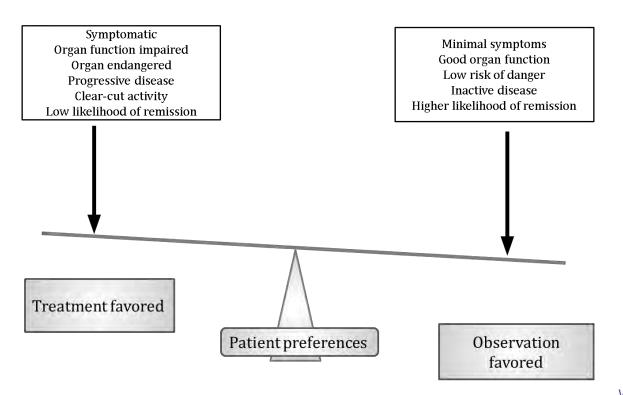
Female predilection


Baughman RP. Ann Am Thorac Soc 2016

Most patients are >55 at the time of diagnosis

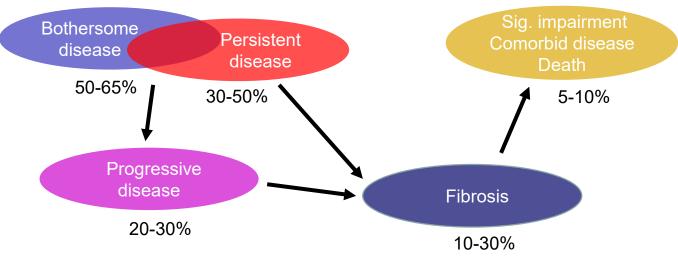

Baughman RP. Ann Am Thorac Soc 2016

Frequency of treatment requirement


Judson MA. Sarcoidosis Vasc Diffuse Lung Dis 2012

Treatment depends on symptoms and danger

Danger to organ(s)


The decision to treat

Wijsenbeek MS. Clin Chest Med 2015

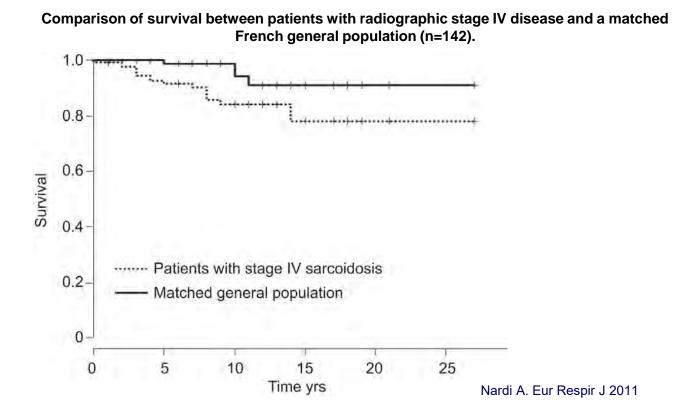
Which patient is at risk?

Baughman RP. QJM 2006; Mana J. Respiration 1994; Viskum K. Eur Respir J 1993; Nagai S. Curr Opin Pulm Med 1999; Judson MA. SVDLD 1993; Neville E. QJM 1983; Israel HL. Ann NY Acad Sci 1986

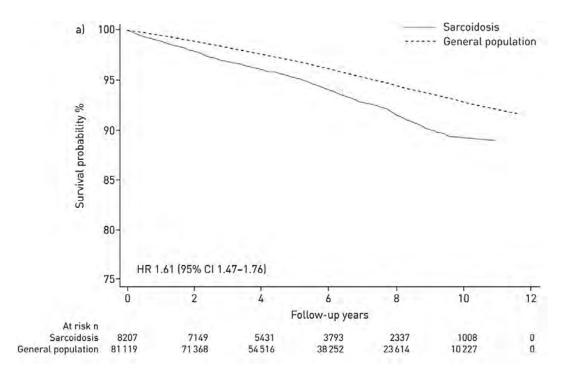
Prognostic markers

Increasing number of organs versus outcome[†]

Outcome at 2-5 yrs	1 organ (n=44)	2-3 organs (n=198)	4+ organs (n=53)
No important issue	64%	46%	13%
Significant organ function impairment	30%	43%	64%
Required assistance	7%	6%	23%

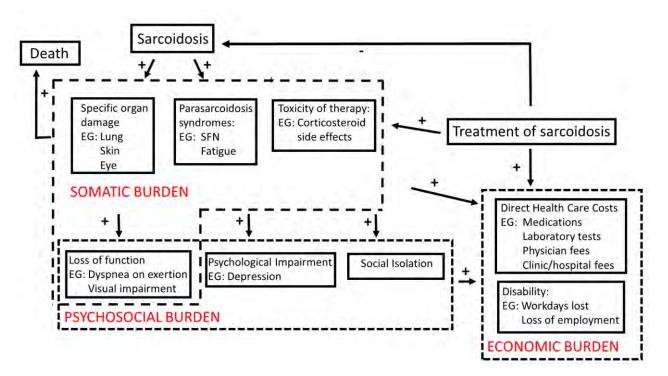

Neville E. QJM 1983; Lower EE. Arch Intern Med 1997; Sones M. Am J Med 1960; Israel HL. Ann NY Acad Sci 1986; Schupp JC. Eur Resp J 2018; Takada K. J Clin Epidemiol 1993⁺

Risk Factors for Development of Advanced Disease Include Those of Persistent or Bothersome Sarcoidosis


Persistent disease	Clinically bothersome disease
Black race	Black race
Older age	More dyspnea at time of diagnosis
Female gender	Need for Tx during first 6 months after diagnosis
Multiple organ involvement	Multiple organ involvement
Ascending Scadding radiograph stage	Ascending Scadding radiograph stage
Scadding stage at presentation	Lower socioeconomic status
Architectural distortion of the airways or cystic changes	
Absence of lymphadenopathy	
Need for systemic therapy	
Splenomegaly	

Patel DC. Pulmonary Sarcoidosis: A Guide for the Practicing Physician 2014

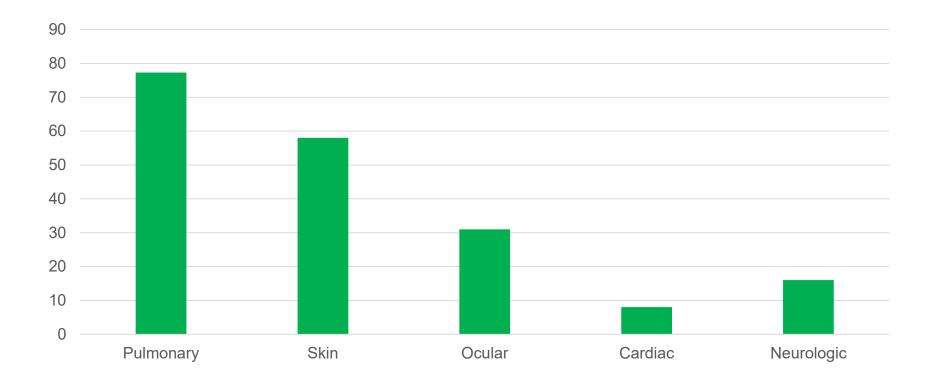
Fibrotic sarcoidosis impact on survival



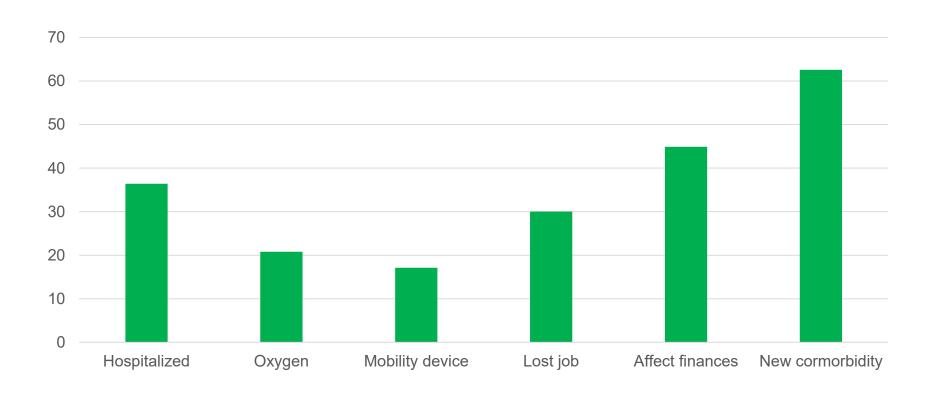
Mortality in Swedish sarcoidosis patients vs general population

Rossides M. Eur Respir J 2018

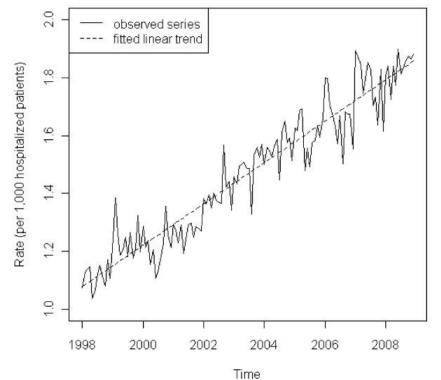
Sarcoidosis burden


Gerke AK. Ann Am Thorac Soc 2017

FSR Sarcoidosis Registry

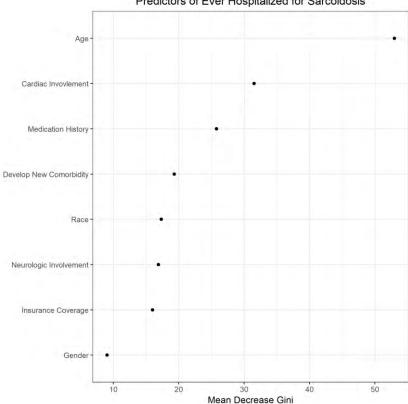

- Web-based, opt-in, longitudinal registry
- 2461 US-based respondents
- Outcome categories
 - Health outcomes
 - Social outcomes
 - Quality of life

Demographics	N (%)
Mean age (SD)	53.9 (10.9)
Female	1823 (74.1)
Race White Black Other Missing	1798 (73.1) 435 (17.7) 218 (8.9) 10 (0.4)
Mean disease duration, yr	12.8 (11.9)
Anti-sarcoidosis medication Current Past None	1559 (63.3) 512 (20.8) 341 (13.9)
Household income >\$85,000 \$35,000-84,999 <\$35,000	721 (29.3) 849 (34.5) 618 (25.1)
Insurance Private Medicare/Medicaid/other Government None	1600 (65) 714 (29) 73 (3)

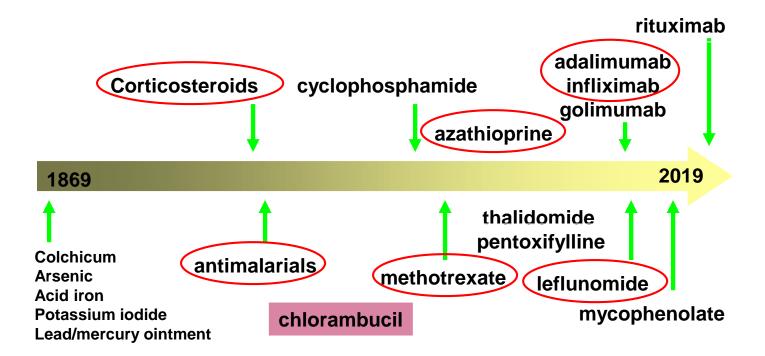

Main organ involvement

Outcomes

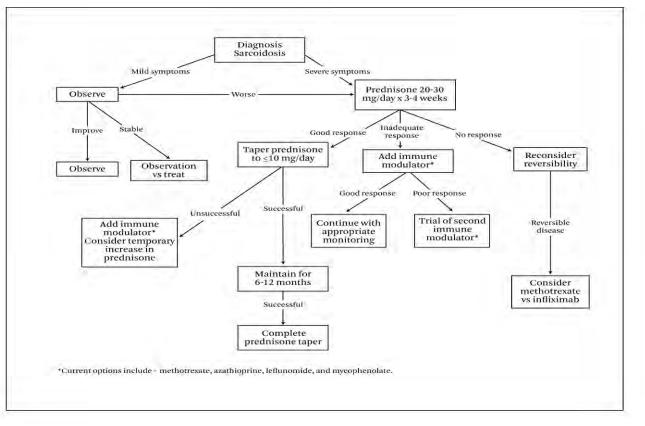
Hospitalizations are rising



Gerke AK. BMC Pulm Med 2012


Ever hospitalized for sarcoidosis?

Variable	Odds ratio
Age/yr	0.99 (0.98-0.99)
Male gender	1.4 (1.1-1.9)
Race White Black Other	Ref 1.7 (1.1-2.3) 1.0 (0.6-1.5)
Insurance Private Government None	Ref 1.6 (1.2-2.1) 2.1 (0.99-4.5)
Neurologic	2.1 (1.6-2.8)
Cardiac	4.9 (3.3-7.3)
Sarcoidosis medications Never Past Current	Ref 1.7 (0.96-3.0 3.1 (1.9-5.0)
Comorbidity	2.1 (1.6-2.7)



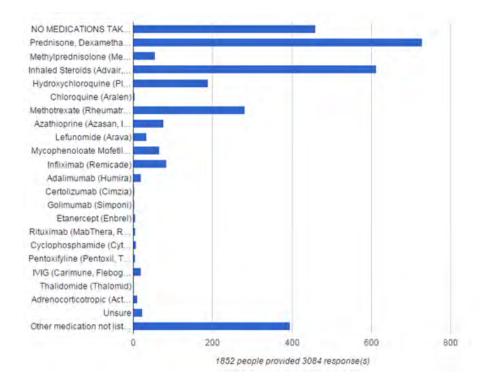
Predictors of Ever Hospitalized for Sarcoidosis

Treatment: main immunosuppressive options

Treatment algorithm

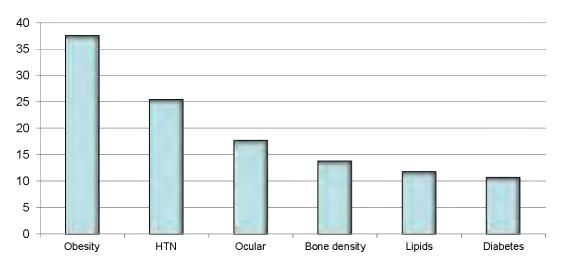
Lazar CA. SRCCM 2010

Glucocorticosteroids


- Glucocorticosteroids
 - first-line treatment in systemic sarcoidosis
 - most commonly used
- Alternative second-line agents important
 - steroid-resistance
 - steroid-induced side-effects
 - steroid-sparing

Medications in FSR registry population

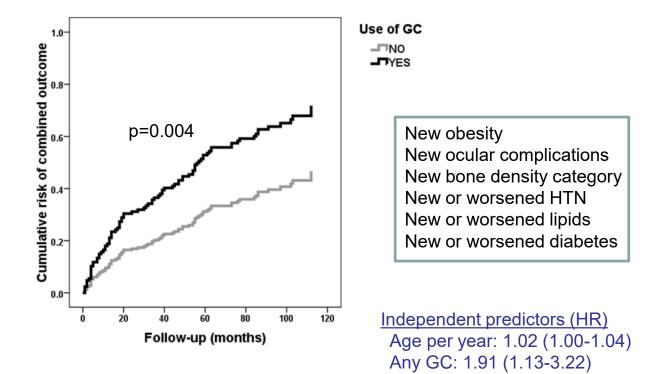
Steroids are associated with impaired QOL


Group	Unadjusted Score	p Value	Adjusted Score†	p Value	Adjusted Score‡	p Value
SGRQ total						
Steroid users $(n = 56)$	52 (45-58)	< 0.0001	49 (43-56)§	0.031	48 (44-53)	0.011
No steroids $(n = 55)$	37 (31-43)		39 (33-44)		39 (35-44)	
SF36-PCS			>			
Steroid users $(n = 56)$	31 (28-34)	0.011	32 (29-35)¶	0.048	32 (29-35)#	0.044
No steroids $(n = 55)$	37 (34-40)		37 (34-40)		37 (34-40)	
SF36-MCS						
Steroid users $(n = 56)$	42 (39-46)	0.055				
No steroids $(n = 55)$	47 (44-50)					

Cox CE. Chest 2004

Metabolic Complications among 154 new sarcoidosis patients seen at CCF

76 patients developed or had worsening

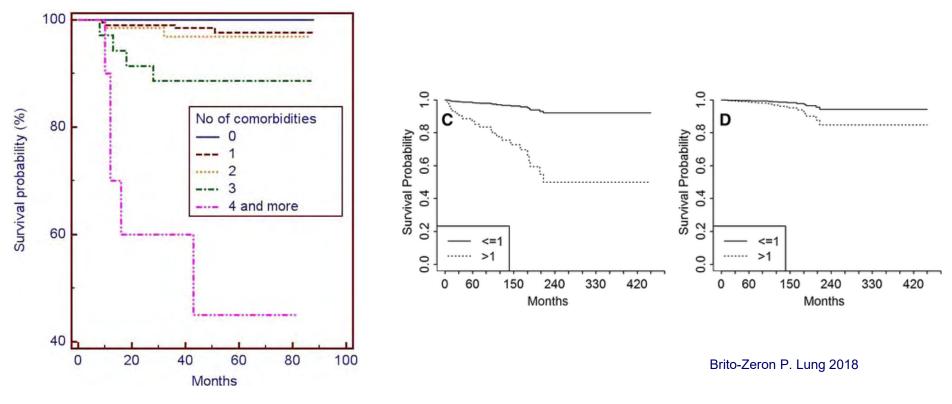

average of 1.9 ± 1 conditions per patient

Rate of Metabolic Complications

Khan N. Resp Med 2017

Risk of steroid complications in 154 sarcoidosis followed longitudinally

Dose of GC (gram): 1.03 (1.1-1.6)

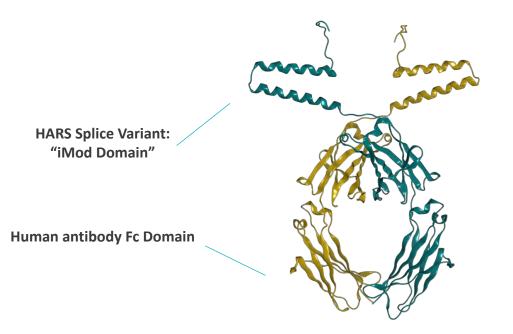

Khan NA. Respir Med 2017

Self-reported comorbidities in registry patients

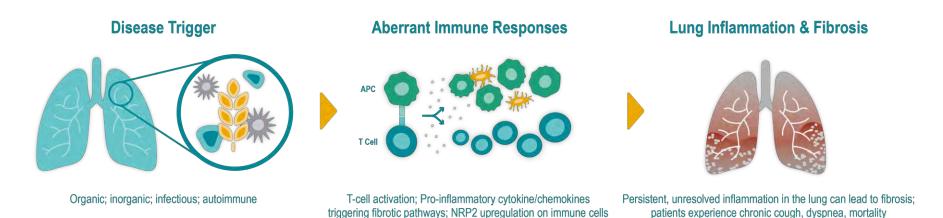
Percent of Respondents Developing Comorbidity After Diagnosis of Sarcoidosis

Presence of comorbidities effect on survival

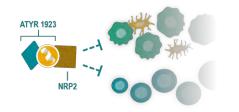
Nowinski A. Clin Respir J 2018


Unmet needs

- Better understanding of the pathogenesis
 - Extant models just coming online will be helpful
- Prognostic stratification and targeted management
 - GRADS study, Gen-Phen study, and others will provide new insights
- Better therapies, with quicker onset of action and less toxicity


ATYR1923 Phase 1b/2a Study for Patients with Pulmonary Sarcoidosis

ATYR1923: Novel Engineered Protein Therapeutic



- iMod Domain of HARS enriched in the human lung
- Inhibits human T cell activation/cytokine release
- Binds selectively to Neuropilin-2 (NRP2)
- Regulates a number of immune celltypes, including: T cells, Neutrophils, Macrophages, Dendritic cells
- iMod Domain fused to Fc Domain to extend half-life
- Once-monthly IV dosing regimen

ATYR1923 Mechanism of Action in ILD

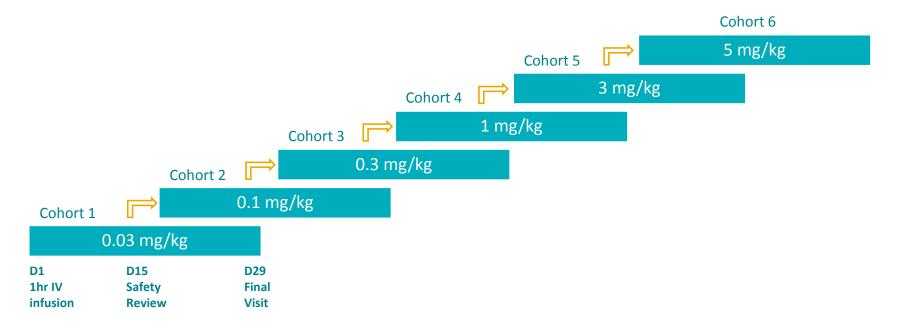
ATRY1923 Dampens Immune Responses

ATYR1923 binds to NRP-2 and downregulates cytokine and chemokine production and T-cell activation

Stabilized Lung

Reduced inflammation and fibrotic deposition; symptom relief, stabilized lung function*

*aTyr hypothesis


Pre-Clinical Translational Data Supports ILD Development

Bleomycin-Induced Lung Injury (IPF) – Mouse	 ATYR1923 reduced fibrosis and inflammation Comparator: pirfenidone Presented at ATS, May 2017
Bleomycin-Induced Lung Injury (IPF) – Rat	 ATYR1923 returned lung function to normal and reduced fibrosis and inflammation Comparator: nintedanib Presented at ATS, May 2018
Sclerodermatous chronic-graft vs host disease (SSc-ILD) – Mouse	 ATYR1923 reduced lung and skin fibrosis Comparator: nintedanib Presented at Scleroderma Foundation Patient Conference, July 2018
SSc-cGVHD (SSc-ILD); <i>P. acnes</i> (Sarcoidosis); <i>S. rectivirgula</i> (CHP); SKG (Ra-ILD) – Mouse	 ATYR1923 demonstrated stage-dependent anti-inflammatory and antifibrotic effect in various experimental models of ILD Comparator: various Presented at ATS, May 2019

PK Profile Supports Potential Once-Monthly Dosing

Phase 1 Healthy Volunteer Study Completed in Australia

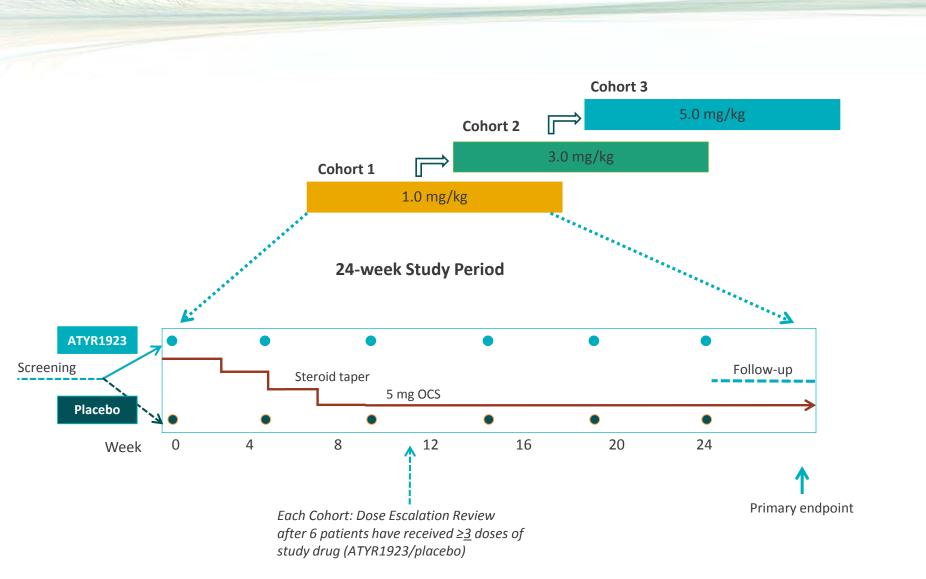
- Positive data announced in June 2018
- Randomized, double-blind, placebo-controlled, single ascending dose (N=36 HVs)
- ATYR1923 was generally well-tolerated with no significant adverse events

Phase 1b/2a Study in Pulmonary Sarcoidosis

Objectives	 Evaluate safety, tolerability, PK, and immunogenicity of multiple ascending doses of ATYR1923 Evaluate signals of drug activity through steroid dose reduction and FDG-PET/CT changes
Design	 Randomized, double-blind, placebo-controlled, multiple ascending dose
Population	 Histologically confirmed pulmonary sarcoidosis Requiring ≥10 mg prednisone (steroid) treatment; capable of steroid taper Symptomatic/active disease at baseline by ^{18F}-FDG-PET/CT, Pulmonary Function Tests
Dosing	 3 sequential cohorts, 12 patients each 2:1 randomization ATYR1923 doses: 1.0, 3.0, and 5.0 mg/kg
Duration	 24-week study period Steroid taper phase down to 5 mg by week 8 16-week maintenance phase
Sites	 Up to ~15 leading pulmonary sarcoidosis centers Collaboration with the Foundation for Sarcoidosis Research

Phase 1b/2a Study Endpoints

Primary


• Safety and tolerability of multiple ascending IV ATYR1923 doses

Secondary

- Steroid-sparing effect
- Immunogenicity
- Pharmacokinetics (PK)
- Exploratory efficacy measures: FDG-PET/CT imaging; Lung function (FVC); Serum biomarkers; Health-related quality of life scales

Phase 1b/2a Study Schema

Phase 1b/2a Study in Pulmonary Sarcoidosis Initiated

Status	 Up to ~15 leading Pulmonary Sarcoidosis centers New site activation ongoing Patient enrollment ongoing
Timelines	 Interim data: 4Q 2019 Study completion: mid-2020⁽¹⁾
Possible Future Development	 Registrational trial in Pulmonary Sarcoidosis Initiate P2 studies in other types of interstitial lung disease (e.g. CTD-ILD; CHP)

Accelerating Value Creation from New Biology

Platform of New Biology:

Discovery pipeline of novel therapeutic candidates based on proprietary knowledge of extracellular functions of tRNA synthetases (~300 protein compositions patented)

Lead Product Candidate: ATYR1923

Engineered, long acting, protein therapeutic, derived from the HARS gene, for the treatment of pulmonary sarcoidosis and other interstitial lung diseases

\$2-3b⁽¹⁾ global opportunity

Financials:

Cash, cash equivalents and investments at \$43m as of 3/31/2019

April 2019: \$5m raise with Federated and Dr. Paul Schimmel, board member, at market, no discount or warrants

Clinical Milestones:

- ✓ Initiated P1b/2a Trial 4Q 2018
 - □ Interim Results 4Q 2019
 - □ Final Results mid-2020⁽²⁾

(1) aTyr estimates for inflammatory ILD: Pulmonary Sarcoidosis, CHP, CTD-ILD; excludes IPF

Thank You