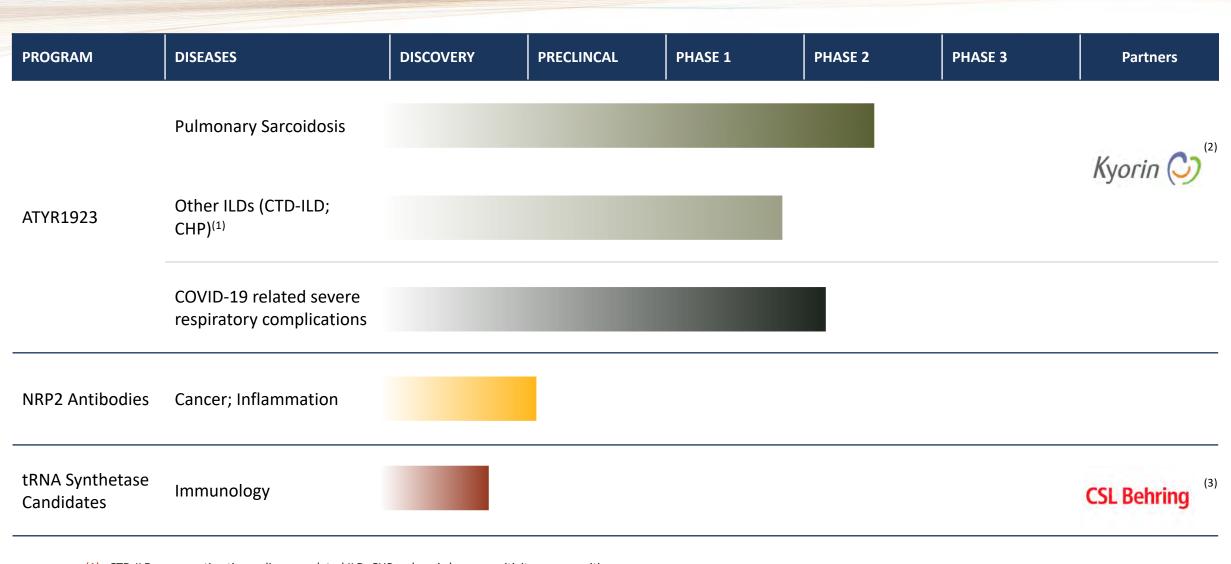
alyr

A New Path to Medicine BIO Investor Forum Digital Jill M. Broadfoot, CFO October 13-15, 2020

Forward Looking Statements

The following slides and any accompanying oral presentation contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. The use of words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," "opportunity," or "continue," and other similar expressions are intended to identify forward-looking statements. For example, all statements regarding: the potential therapeutic benefits of proteins derived from tRNA synthetase genes and our product candidates, including ATYR1923, and development programs; the ability to successfully advance our product candidates and undertake certain development activities (such as the initiation of clinical trials, clinical trials enrollment, the conduct of clinical trials and announcement of top-line results) and accomplish certain development goals, and the timing of such events; our ability to receive regulatory approvals for, and commercialize, our product candidates; our ability to identify and discover additional product candidates; potential activities and payments under collaboration agreements; and the ability of our intellectual property portfolio to provide protection are forward-looking statements. All forward-looking statements are based on estimates and assumptions by our management that, although we believe to be reasonable, are inherently uncertain. All forward-looking statements are subject to risks and uncertainties that may cause actual results to differ materially from those that we expected. These risks, uncertainties and other factors are more fully described in our filings with the U.S. Securities and Exchange Commission, including our Annual Report on Form 10-K, our Quarterly Reports on Form 10-Q, and in our other filings. The forward-looking statements in this presentation speak only as of the date of this presentation and neither we nor any other person assume responsibility for the accuracy a

We own various U.S. federal trademark applications and unregistered trademarks, including our company name. All other trademarks or trade names referred to in this presentation are the property of their respective owners. Solely for convenience, the trademarks and trade names in this presentation are referred to without the symbols [®] and [™], but such references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.

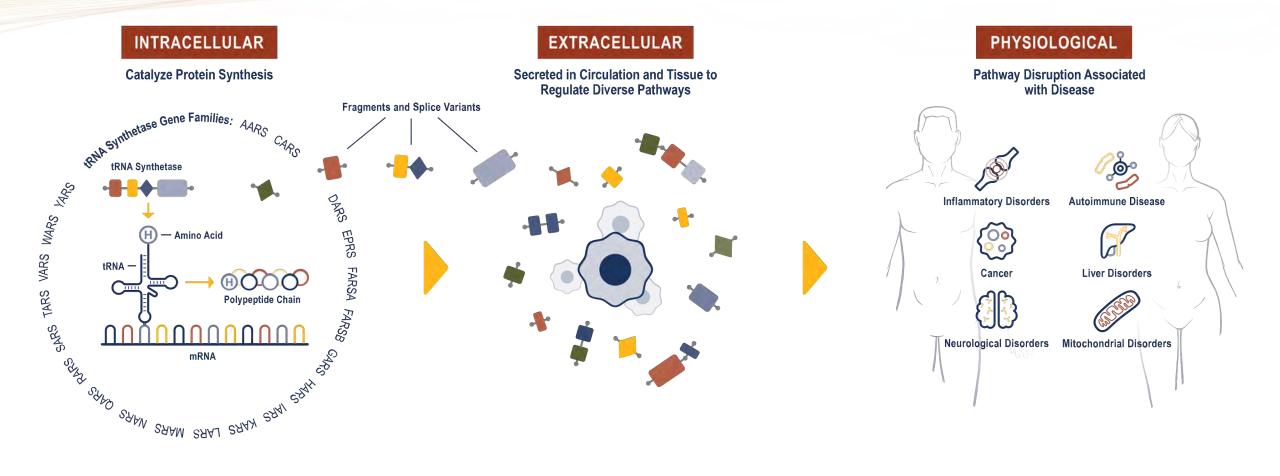

aTyr: A New Path to Medicine

Mission	 Develop a new class of medicines based on proprietary biology platform
	 Potential first-in-class immunomodulator for severe inflammatory lung diseases Phase 1b/2a study in pulmonary sarcoidosis⁽¹⁾
Phase 2 clinical program: ATYR1923	 Phase 2 study in COVID-19 related severe respiratory complications readout expected in Q4 2020⁽²⁾
	 Japanese Phase 1 healthy volunteer study initiated by Kyorin Pharmaceuticals in Q3 2020
Pipeline of novel discovery candidates	 First anti-neuropilin-2 (NRP2) antibody IND candidate expected to be announced in Q4 2020 tRNA synthetase immunology research collaboration update anticipated in Q4 2020
Financial Position	 Cash, cash equivalents and investments at \$41.4m as of June 30, 2020

(1) Timing dependent on impact of the COVID-19 pandemic

(2) Timing dependent on site initiation and patient enrollment

aTyr Development Pipeline

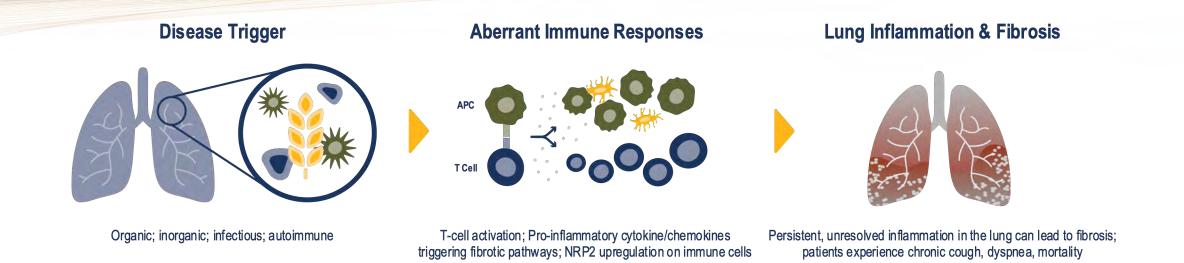

(1) CTD-ILD = connective tissue disease-related ILD; CHP = chronic hypersensitivity pneumonitis

(2) Kyorin partnership for ILD in Japan

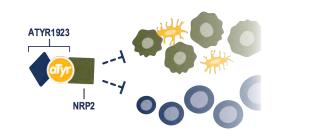
4

(3) CSL partnership for up to 4 tRNA synthetases

tRNA Synthetases May Have Novel Functions Extracellularly



ATYR1923 A Novel Immunomodulator for Inflammatory Lung Disease

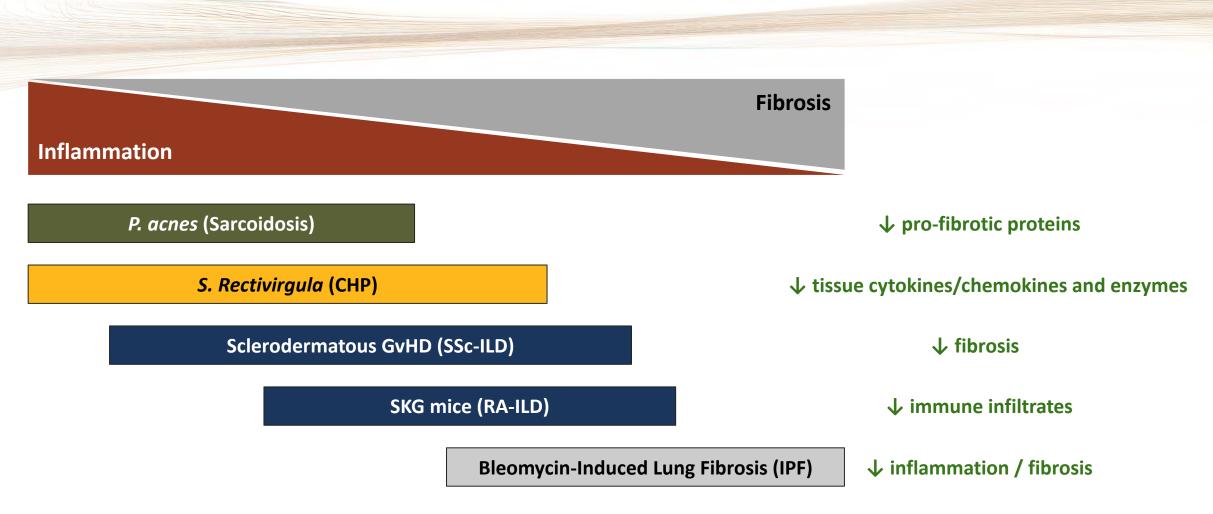

ATYR1923: Potential First-in-Class Therapy for Severe Inflammatory Lung Disease

- Fc fusion protein therapeutic derived from aTyr's proprietary protein library
- Binds selectively to NRP2, a cell surface receptor upregulated in inflamed lung tissue
- Downregulates inflammatory and pro-fibrotic cytokine and chemokine levels as well as histological inflammation and fibrosis in pre-clinical models
- Well tolerated in 25 healthy subjects in Phase 1 with PK supporting monthly IV Dosing
- No safety concerns identified in independent interim safety reviews in pulmonary sarcoidosis and COVID-19 patients

ATYR1923 Mechanism of Action in Inflammatory Lung Disease

ATYR1923 Dampens Immune Responses

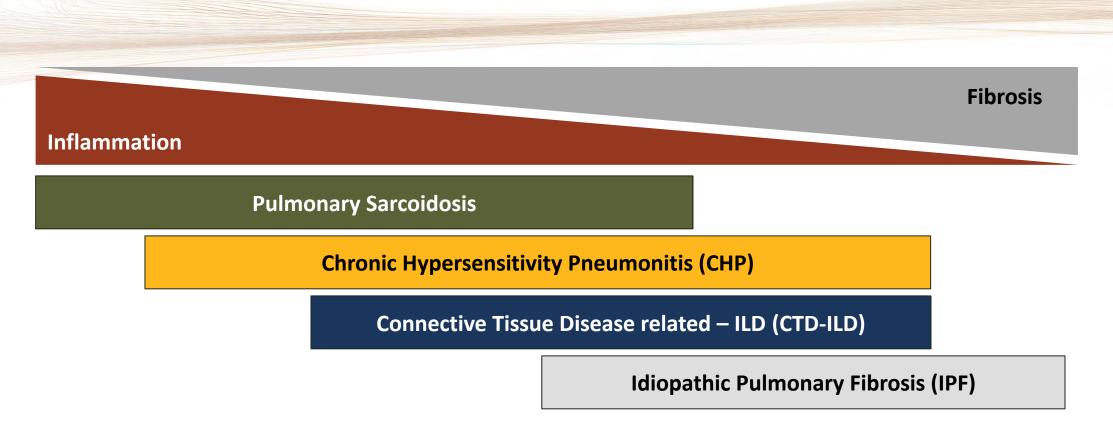
ATYR 1923 binds to NRP2 and downregulates cytokine and chemokine production and T-cell activation


Stabilized Lung

Reduced inflammation and fibrotic deposition; symptom relief, stabilized lung function*

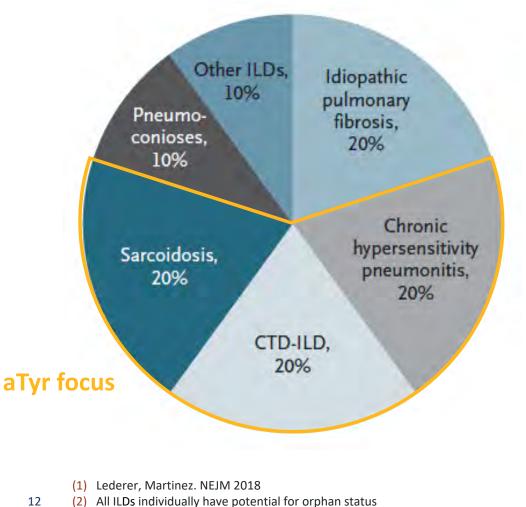
*aTyr hypothesis

Demonstrated Effect in Animal Lung Injury Models



Consistent downregulation of pro-inflammatory cytokines including IL-6, MCP-1, and IFN-γ

ATYR1923

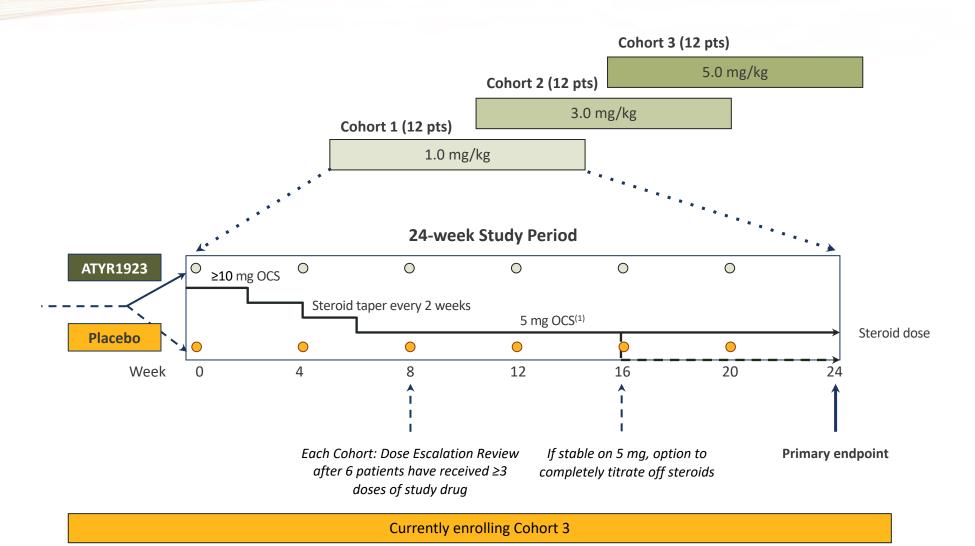

Interstitial Lung Disease

ILDs Share Common Immune Pathology Leading to Fibrosis

- ILDs lie on a spectrum of inflammation and fibrosis, but all share an immune pathology
- Progression to fibrosis is a key driver of morbidity and mortality
- By targeting aberrant immune response driving fibrosis, ATYR1923 has potential to improve outcomes in multiple ILDs

Market Opportunity in Inflammatory Interstitial Lung Disease

12


Relative Distribution of ILDs in the USA⁽¹⁾

- >200 types of ILD: 4 major types comprise 80% of patients
- Limited standard of care with substantial morbidity and mortality
- aTyr focused on 3 most inflammatory types: ~500-600k US patients⁽²⁾; ~3m globally
- \$2-3b global market opportunity⁽³⁾

Phase 1b/2a Study in Pulmonary Sarcoidosis Ongoing

Design	 Randomized (2:1), double-blind, placebo-controlled, multiple ascending dose 3 IV doses of ATYR1923 being tested at 1.0, 3.0, and 5.0 mg/kg Forced steroid taper to 5.0 mg by week 8; taper to 0 mg possible at week 16 in responders
Population	 36 histologically confirmed pulmonary sarcoidosis patients ≥10 mg stable oral corticosteroid treatment Symptomatic/active disease at baseline
Primary Endpoint	 Safety and tolerability of multiple ascending IV ATYR1923 doses
Secondary Endpoints	 Steroid-sparing effect Immunogenicity Pharmacokinetics (PK) Exploratory efficacy measures: FDG-PET/CT imaging; Lung function (FVC); Serum biomarkers; Health-related quality of life scales

Phase 1b/2a Pulmonary Sarcoidosis Study Schema

ATYR1923 Japan Collaboration

Kyorin Overview

- Founded: 1923
- Focus: Respiratory, ENT, Urology
- 1600 employees: incl. 350 in R&D; 750 sales reps covering top respiratory centers in Japan
- Sales: ~\$1b USD
- Market cap: \$1.1b USD (4569:JP TSE)

Key Terms

- Scope: ATYR1923; Japan; ILD
- Upfront payment: \$8m
- Development, regulatory and commercial milestones: \$167m
- Tiered sales royalties into double digits
- Kyorin to fund all development and commercial activities in Japan

Phase 1 study to evaluate the safety, pharmacokinetics and immunogenicity in Japanese healthy volunteers initiated.

ATYR1923

COVID-19 Related Severe Respiratory Complications

ATYR1923 for COVID-19 Related Severe Respiratory Complications

COVID-19 Pathology	ATYR1923 MOA
• A subset of COVID-19 patients experience signification leading to morbidity and mortation leading to morbidity and mortation leading to morbidity and mortation leaders and mo	lity including IL-2, TNF-α, and IL-13, from human T cells activated <i>in vitro</i>
 Lung inflammation is driven by certain cytokines: I 7, -6,-10, G-CSF, MCP1, MIP1A and TNF-α 	 L-2, - ATYR1923 anti-inflammatory and anti-fibrotic effects, including decreased cytokine/chemokine signaling (IL-6, MCP1 and IFN-γ), have been demonstrated in multiple animal models of immune-mediated lung injury
• Lung tissue from patients who died from COVID-19 related respiratory failure shows increased NRP2 (2	
• SARS-CoV-2 Spike protein S1 directly binds to the k domain of NRP2 ^{(2) (3)}	01

(2) <u>http://doi.org/dx5d</u>; 2020

⁽¹⁾ Ackermann, M., Verleden, S.E., Kuehnel, M., et al. NEJM 2020.

ATYR1923 Phase 2 Study in COVID-19 Related Severe Respiratory Complications Ongoing

Objective	Evaluate safety and preliminary efficacy of ATYR1923 in subjects hospitalized with COVID-19-related severe respiratory complications not requiring mechanical ventilation
Design	Randomized, double-blind, placebo controlled, single dose
Population	30 adult patients with severe respiratory complications related to COVID-19 infection
Doses	Randomized 1:1:1 - Single dose of 1.0 or 3.0 mg/kg ATYR1923 or Placebo
Endpoints	 Primary: Safety and Tolerability Secondary: Oxygenation, Fever, Hospital / ICU metrics, Inflammatory markers

NRP2 Antibodies

Regulating Diverse Disease Pathways

NRP2: A Novel Therapeutic Target

- NRP2 is a potentially novel target for cancer and inflammatory disorders
- Acts as a co-receptor for VEGF-C, class 3 Semaphorins and CCL21
- NRP2 expression is upregulated on tumors and immune cells during inflammation
- NRP2 expression is linked to worse outcomes in many cancers
- aTyr has developed antibodies to selectively target different NRP2 epitopes for diverse therapeutic applications
- aTyr's aNRP210 antibody blocked VEGF-C binding to NRP2 and showed tumor inhibitory effect in preclinical models of triple-negative breast cancer, increasing sensitivity to chemotherapy ⁽¹⁾
- This data suggests aNRP210 could potentially be effective in certain types of solid tumors, including aggressive tumors ⁽¹⁾

tRNA Synthetases

A Potential New Therapeutic Protein Class

tRNA Synthetases: A Potential New Therapeutic Protein Class

- aTyr owns IP covering proteins derived from all 20 tRNA synthetase gene families
- Lead program ATYR1923 is based on a naturally occurring splice variant of one of these families, histidyltRNA synthetase (HARS)
- tRNA synthetases are secreted extracellularly and occur in novel forms which lose their canonical function
- Extracellular tRNA synthetase disruption (genetic / autoimmune) is associated with disease in humans
- aTyr working with leading biopharmaceutical company CSL Behring on identifying new IND candidates for immunological disorders in up to four tRNA synthetases from aTyr's pipeline (non-HARS derived)
 - CSL will fund all R&D activities and will pay a total of up to \$17.0m in option fees if all four synthetase programs advance
 - aTyr will grant CSL an option to negotiate licenses for worldwide rights to each IND candidate that emerges from this research collaboration

A New Path to Medicine

aTyr: A New Path to Medicine

- Platform of proprietary new biology
- Phase 2 clinical program: ATYR1923
 - Novel MOA for inflammatory lung disease
 - Demonstrated effect in multiple animal lung injury models
 - Phase 1 in healthy volunteers completed
 - Phase 1b/2a clinical study in pulmonary sarcoidosis enrolling in US positive interim safety data reported 12/2019
 - Kyorin collaboration for ILD in Japan with total deal value up to \$175m; Phase 1 study initiated
 - Phase 2 trial in COVID-19 patients with severe respiratory complications enrolling in US- positive outcome from interim safety analysis conducted by an independent data and safety monitoring board reported 8/2020
- Discovery stage programs in cancer and immunology
 - Recently published poster shows aTyr antibody anti-tumor effects in triple-negative breast cancer model
- Cash, cash equivalents, and investments at \$41.4m as of June 30, 2020

Upcoming Catalysts

ATYR1923	 Phase 1b/2a results in pulmonary sarcoidosis patients⁽¹⁾ Kyorin's Phase 1 in healthy volunteers to support trials for ILD in Japan initiated in Q3 2020 Phase 2 results in COVID-19 patients expected in Q4 2020⁽²⁾ Potential expansion into Phase 2 studies for second ILD indication
----------	---

NRP2 Antibodies

• Selection of first anti-NRP2 antibody IND candidate expected in Q4 2020

tRNA Synthetase Candidates

- Outcome from the first phase of the CSL Behring research collaboration planned in Q4 2020
- (1) Timing dependent on impact of the COVID-19 pandemic
- (2) Timing dependent on site initiation and patient enrollment

Thank You